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Appendix A

Logistic Regression Theory

For evaluating the relative performance of the LightGBM model, an industry-standard
LR model generously provided by a medium-tier bank in Norway. LR is commonly
used to predict categorical values (Lever et al., 2016) and is the most popular method
for credit scoring in banks. The LR model from the bank was used in order to make
the baseline as realistic as possible. The essential property of LR is that a linear
combination of independent variables can be mapped to a probability score (Hess
and Hess, 2019), and that the dependent variable can be classified into two groups
based on the scores (Bussmann et al., 2020). This section outlines how LR works for
estimating probability of default (PD):

Let Yn be the estimated default probability for customer n, based on on the fea-
ture values x1n, ..., xTn. PD can then be expressed as:

P(Yn = 1|x1n, ..., xTn) = pn (A.1)

This probability can be further expressed as an odds ratio, which is an indicator
of an association between variables (Connelly, 2020). Odds ratio can be defined
as the ratio of the probability of an outcome occurring to the probability of it not
occurring (Lever et al., 2016):

Odds ratio =
pn

1 − pn
(A.2)

The linear combination of the independent variables can be expressed as the nat-
ural logarithm of the odds ratio. This yields the logistic regression equation (Hess and
Hess, 2019):

ln(
pn

1 − pn
) = α +

T

∑
t=1

βtxnt (A.3)

Where α is the intercept and βt is the t’th regression coefficient. These parameters
are estimated using MLE. Solving Equation A.3 for p gives a probability function
that maps the linear function back to probabilities:

pn =
1

1 + e−(α+∑T
t=1 βtxnt)

(A.4)

This expression is called the logistic function and yields a sigmoid curve, which
lies between 0 and 1 for all values of the linear predictor (Lever et al., 2016; Hess and
Hess, 2019).

Using Equation A.1 and Equation A.4, the PD can thus be expressed as a logistic
function:

P(Yn = 1|x1n, ..., xTn) =
1

1 + e−(α+∑T
t=1 βtxnt)

(A.5)
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The LR model is non-linear in probabilities and odds (Equation A.4), but linear
in log-odds (Equation A.3). Any input variable can be transformed, but the logistic
regression equation (Equation A.4) will remain linear. The transformation of the
input variables applies to all of the data, meaning that some non-linear relationships
between features might be overlooked by the model.



Gradient Boosting Decision Trees 

In this section we provide more details on the GBDT models briefly discussed in section 3.1 of the 

paper. 

We are given 𝑀𝑥𝑁 input data, with 𝑋 = {𝑥𝑖}𝑖=1
𝑀 , feature vectors 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑁), and targets

𝑌 = (𝑦1, … , 𝑦𝑀). Overall, GBDT tries to find a strong learner 𝐹 by minimizing a loss function 𝐿: 

𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐹

∑ 𝑙(𝑦𝑖 , 𝐹(𝑥𝑖))

𝑀

𝑖=1

 (A.6) 

Here, the strong learner 𝐹 can be represented as a sum of 𝑇 weak learners 𝑓𝑤 (e.g., decision trees), 

such that 𝐹(𝑥𝑖 = ∑ 𝑓𝑤(𝑥𝑖)𝑇
𝑤=1 ).  At the w-th stage, the previous 𝑤 − 1 weak learners are fixed when 

learning the w-th weak learner. Thus, when constructing the w-th learner, the following loss is 

minimized by GBDT: 

𝐿𝑤 = ∑ 𝑙(𝑦𝑖 , 𝐹𝑤−1(𝑥𝑖) + 𝑓𝑤(𝑥𝑖))

𝑀

𝑖=1

 
(A.7) 

Here, 𝐹𝑤−1(𝑥) = ∑ 𝑓𝑘(𝑥)𝑤−1
𝑘=1 . This can be further approximated by using first- and second-order 

Taylor expansions: 

𝐿𝑤 = ∑ [𝑙(𝑦𝑖 , 𝐹𝑤−1(𝑥𝑖) + 𝑔𝑖𝑓𝑤(𝑥𝑖) +
ℎ𝑖

2
𝑓𝑤

2(𝑥𝑖))]

𝑀

𝑖=1

(A.8) 

Where 𝑔𝑖 =
𝜕𝑙(𝑦𝑖,𝐹𝑤−1(𝑥𝑖))

𝜕𝐹𝑤−1(𝑥𝑖)
 and ℎ𝑖 =

𝜕2𝑙(𝑦𝑖,𝐹𝑤−1(𝑥𝑖))

𝜕2𝐹𝑤−1(𝑥𝑖)
 are the first- and second-order partial derivatives, 

respectively. Thus, GBDT performs gradient descent in the function space; at each step 𝑤, GBDT tries 

to find the function 𝑓𝑤 that minimizes 𝐿𝑤. Each weak learner 𝑓𝑤 trains on the negative gradient of the 

loss function, with respect to the previous predictions, 𝐹𝑤−1 instead of actual labels 𝑌. The result is a 

model for reducing bias and variance, and that can be used for both regression and classification on 

numerous applications (Breiman, 1998). 

Shapley values 

With LR, it is trivial to see how a given feature value 𝑥𝑖 contributes to the prediction. The effect of 

feature j is the difference between the feature value and the average feature value. 

In (A.9) 𝐸 is the mean effect estimate for feature j. Similarly, we can find the feature contributions of 

all features for a given instance by taking the predicted value less the average predicted value: 

∑ 𝜃𝑗(𝑓) = 𝑓(𝑥) − 𝐸𝑓(𝑋)

𝑁

𝑗=1

(A.9) 

Shapley values (Shapley, 1953) were initially used for calculating a fair payout, i.e., finding payouts to 

players reflecting their contribution to the total payout. Strumbelj and Kononenko (2013) found that 



Shapley values can be applied for explaining models by viewing features as players and the predictions 

as payouts. Thus, given a game with M features participating, where the aim is to maximize some 

objective function, we have the following. 

Let 𝑆 ⊆ 𝑀 = {1, … , 𝑀} be a feature group, i.e., a subset consisting of |S| features. In addition, let 𝑣(𝑠) 

be a contribution function that maps feature subsets to real numbers, indicating the contribution of 

feature group S to the total prediction. Then, the amount that feature j contributes to the final 

prediction of one instance is the weighted sum of all possible feature group combinations: 

 
∅𝑗 = ∑

|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
(𝑣(𝑆 ∪ {𝑗}) − 𝑣(𝑠)), 𝑗 = 1, … , 𝑀

𝑆⊆𝑀\{𝑗}
 

(A.10) 

An interpretation of Equation A.10 is that Shapley values represent the average expected marginal 

contribution of a feature on a given prediction after all feature combinations have been checked. 

Informally, this can be expressed as: 

 
∅𝑗 =

1

#𝑝𝑙𝑎𝑦𝑒𝑟𝑠
∑

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗 𝑡𝑜 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑗 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑠𝑖𝑧𝑒
𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑗

 
(A.11) 

 

 Over the years, several techniques for explaining AI models have been developed, such as LIME 

(Ribeiro et al., 2016) and DeepLift (Shrikumar et al., 2019). Common to these techniques, however, is 

that they do not necessarily meet the properties of local accuracy, missingness, and consistency. To 

have a unified measure of feature importance, an explanatory model should satisfy the following 

three requirements. It should match the original model for a single instance (local accuracy), attribute 

zero importance to missing features in a given coalition (missingness) and increase any attributions 

for a given feature if the underlying model changes into giving that feature more impact (consistency) 

(Lundberg and Lee, 2017). Young (1985) found that the only values satisfying these three properties 

are Shapley values. This implies that any explanation technique not based on Shapley values will 

violate local accuracy or consistency (Molnar, 2019). 
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Appendix B

Data

B.1 Features used in the LR model

Feature Name Feature Explanation Type

Customer Length in Months Number of months since the customer first joined
as a client bin

Number of Mortgages Number of mortgages at the time of scoring bin

Average Salary (L3M) Average salary of the customer, last three months bin

Average Used Credit (L3M) Average used credits by the customer, last three
months bin

Balance in Percentage Balance in Percentage bin

Grouped Number of Notices Grouping of reminder variables bin

TABLE B.1: Explanations of the features used in the LR model.
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B.2 Features used in the LightGBM model

Feature Name Feature Explanation Type

Customer Length in Months Number of months since the customer first joined
as a client float

Number of Mortgages Number of mortgages at the time of scoring float

Average Salary (L3M) Average salary of the customer, last three months float

Limit Blanco Unsecured (2MA) Limit Blanco two months ago float

Average Used Credit (L3M) Average used credits by the customer, last three
months float

Savings Balance Sum balance at the time of scoring float

Savings Balance (1MA) Sum balance one month before scoring float

Number of Logins (L3M) Number of logins, last three months float

Number of First Reminders Unsecured Number of first reminders on unsecured loans float

Balance Consumer Loan Balance of the consumer loan at the time of scoring float

Balance in Percentage Balance in Percentage float

Percentage Change in Balance (1MA) Percentage change in balance between one month
ago and time of scoring float

Percentage Change in Balance (3MA) Percentage change in balance between three
months ago and time of scoring float

Balance Longest Positive Interval (L3M) Longest continous period of positive balance, over
the last three months float

Balance Standard Deviation (L3M) Standard deviation of balance, last three months float

Balance Minimum Level (L3M) The lowest balance level, last three months float

Balance Mean (L3M) Balance mean, last three months float

Balance Differentiated Max Change (L3M) The differentiated maximum change in balance,
last three months float

TABLE B.2: Explanations of the features used in the LightGBM model.
A subset of these features was used for the LightGBM (LR) model.
This model was used for comparing LR and LightGBM more directly.
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TABLE B.3: Feature statistics for the training set consisting of 8,381 instances
(60% of the data). Note that the data is not normalized.



6 Appendix B. Data

B.4 Class distributions

Training Test

Size 60% (8,381) 40% (5,588)

Minority class 8.82% (739) 8.80% (492)

TABLE B.4: Class distribution and size of each dataset, used for all
models. Stratified sampling was used to split the datasets evenly.
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Appendix C

Data Visualization for Logistic
Regression

C.1 Correlation heatmap of LR features

FIGURE C.1: Correlation heatmap for the features used in the LR
model. The feature combinations are color coded by correlation, ex-

plained by the color scale to the right.
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C.2 Principal component analysis of LR features

FIGURE C.2: Principal component analysis (PCA) conducted on the
Logistic Regression dataset.
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C.3 Violin plot of LR features

FIGURE C.3: Kernel density estimation on the Logistic Regression
dataset visualized through violin plots.
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Appendix D

Model details

D.1 Final hyperparameters for LightGBM model

Hyperparameter Value
Boosting GBDT
Metric AUC
Learning rate 0.007
Scale pos. weight 11.5
Boosting rounds 25,000
Early stopping 5,000
Number of leaves 3
Max bin 255
Min data in leaf 1
Max depth -1
Number of splits 10
Lambda L1 (Lasso) 0.6
Lambda L2 (Ridge) 0.02

TABLE D.1: Hyperparameters for the final LightGBM model. The
exact same parameters were used on the scaled-down LightGBM (LR)

model.
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Appendix E

ROC and PR evaluation metrics

Receiver operating characteristic (ROC) ROC curves plot the true positive rate
(TPR), also called recall, on the y-axis against the false positive rate (FPR) on the
x-axis for all possible cut-off values:

TPR =
TP

TP + FN
(E.1)

FPR =
FP

FP + TN
(E.2)

Accurate models are recognized by as high TPR as possible for low FPR values,
meaning that a bigger AUC is better.

Precision recall (PR) Precision recall curves plot positive predictive value (PPV),
also called precision, on the y-axis and recall on the x-axis:

PPV =
TP

TP + FP
(E.3)

For imbalanced data sets with smaller positive classes, the most important task
of the model is to correctly predict positive cases. The focus on negative predictions
are reduced, meaning that the importance of PPV increases. This makes precision
recall a valuable measurement for the LightGBM model.
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Appendix F

Model comparison with same
features

F.1 AUC and PRC curves

(A) ROC plot (B) PR plot

FIGURE F.1: Evaluation curves. (a) ROC plot and (b) PR plot com-
paring the performance of the LightGBM and LR models where both
models are trained on the same features. Note that the LR variables
are binned in order to comply with the LR assumptions, whereas

LightGBM are trained on the features directly.
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F.2 SHAP Feature Importance

FIGURE F.2: Simplified SHAP variable importance plot for the Light-
GBM (LR) model ranked by importance. Note that SHAP values are

in absolute log-odds.
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F.3 Confusion matrices

LightGBM (LR) Logistic Regression

Actual Positive Negative Positive Negative

Predicted

Threshold = 10%
Positive 477 2,700 464 3,255

Negative 15 2,396 28 1,841

Threshold = 15%
Positive 468 2,260 438 2,524

Negative 24 2,836 54 2,572

TABLE F.1: Confusion matrix for different cut-off limits for the Light-
GBM and Logistic Regression models, where both models are trained

on the same features.
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Appendix G

Difference in approximated lost
profits for the two models

FIGURE G.1: 3D plot of differences in lost profits between Logistic
Regression and LightGBM, for various levels of interest rates and
thresholds for default. The graph approximates the current yearly
loss of not using LightGBM as credit scoring model. Note that the

LightGBM model is calibrated.
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Appendix H

Calibration of LightGBM model

H.1 Uncalibrated LightGBM vs calibrated LightGBM

FIGURE H.1: Predicted probabilities against true fraction of probabil-
ities. The black dotted line represents a perfectly calibrated classifier.
The blue and orange lines represents the uncalibrated and calibrated
LightGBM models, respectively. Note how the uncalibrated Light-

GBM model (yellow) overestimates the true probabilities.
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H.2 Theory and procedure behind LightGBM calibration

The idea behind calibration within machine learning is that a model’s predicted
probabilities of outcomes reflect the true probabilities of those outcomes (Nixon et
al., 2019). Thus, a classification model is calibrated if the predicted probability p̂ is
always equal to the true probability, p, for a given class y. From Figure H.1, it is clear
that the uncalibrated LightGBM model overestimates the true probabilities. For in-
stance, for a predicted probability of 40%, the true fraction of positives (representing
true probabilities) is just below 20%.

Our calibration procedure can be summarized as follows:

1. Instead of using the LightGBM model directly for predicting, we stored the
index of the leaf used for the prediction. Thus, since our model had 25000
trees, an array of shape (Nx25000) was stored for predictions on N instances.
Each element in the array indicates the leaf of each tree.

2. This array was then one-hot encoded, yielding a (Nx75000) array.

3. Using this array as our input data, X, and the actual targets as the labels, y, a
Linear Regression model f (X, y) was trained.

Thus, this model would function as a regressor mapping the LightGBM classifier
output to a calibrated probability between 0 and 1.

Since we used stratified k-fold cross-validation, 10 LightGBM models were trained.
Thus, 10 models had to be calibrated. Therefore, the procedure mentioned above
was repeated 10 times, yielding 10 Linear Regression models (calibrators). Thus, the
final predictions became the mean of the outputs from all 10 calibrators. Note that
to reduce overfitting, the calibrators were only trained on the training data, repre-
senting 60% of the overall dataset, and only evaluated on the test data. The resulting
calibrated LightGBM model is shown in Figure H.1 in blue, where we clearly see
that the predicted probabilities are closer to the ideal probabilities.



Appendix I 

Data visualization 

The following subsections present data visualization techniques on the dataset used for the LightGBM 

model. First, Principal Component Analysis is conducted to look for any clear linear separation of the 

dataset. Second, kernel density estimation is performed and visualized through violin plots, to better 

indicate the feature distributions. Finally, correlation heatmaps are presented to look for any patterns 

between the features. Data visualizations of the data used for the LR model are found in Appendix C. 

I .1  LightGBM dataset 

Principal Component Analysis 

 

FIGURE I.1: Principal Component Analysis on the dataset used for the LightGBM model. 

Each instance is normalized and projected onto the space spanned out by the most 

dominant eigenvectors. Each instance is color-coded based on the target class. 

Figure I.1 displays the resulting plot after performing Principal Component Analysis (PCA) on the 

training dataset used by the LightGBM model (Jolliffe, 1986). PCA projects high-dimensional data 

down to two dimensions using the most dominant eigenvalues and their corresponding eigenvectors. 

In the plot, each dot represents one instance in the data set and is colored based on the target class. 

The two axes are the two largest principal components, which represent the two directions in the 

dataset with the most variance. 

It is evident from the figure that no clear separation of the target variable exists, indicating that 

utilizing a vanilla linear data-separation model without further data transformations would yield poor 

results. Furthermore, the two largest principal components only explain approximately 31% of the 

variance in the dataset. This lack of importance, combined with the poor separation, indicates that a 

model with the flexibility to handle non-linear correlations, such as LightGBM, is preferred. 

  



 
FIGURE I.2: Violin plot of the data set used for the LightGBM model, with normalized 
values. Each violin indicates a feature distribution and is colored based on the target 
class. White dots indicate the feature median, and the black bar indicates the 
interquartile range. Outliers with an absolute standard deviation larger than 5 are 
removed for visualization purposes. 

Figure I.2 displays a violin plot of the data set used for training the LightGBM model (Hintze and 

Nelson, 1998). A violin plot combines box plots and kernel density plots by estimating the underlying 

distribution of each feature. Thus, violin plots are suitable for displaying feature characteristics 

efficiently. In the figure, each white dot represents the feature median, whereas the width of each 

violin indicates the frequency of data points. The black bar of each violin indicates the interquartile 

range. Each violin is colored based on the target variable. 

From the violin plot, it is evident that most of the features are, to some extent, concentrated around 

their means. Notable differences in the feature distributions for the two target classes are also 

present, indicating a signal in the data with the potential to separate these classes. For all features, 

the tails of the feature distributions are thin, represented in the plot as the upper and lower thin lines. 

The feature Percentage Change in Balance (1MA) stands out, with almost all data points concentrated 

around 0.0. The abnormal shape of this violin is caused by a few outliers with significant percentage 

changes. The reader is referred to Appendix B, where feature statistics are presented through the 

usage of quantiles. 

 

 



Correlation heatmap 

 

FIGURE I.3: Correlation heatmap of the dataset used by the LightGBM model. The feature 

combinations are color-coded based on correlation, explained by the color scale to the 

right. Light colors indicate positive correlations. 

Figure I.3 shows the linear correlation between all features, including the target variable. The colors 

shown on the right-hand axis indicate the magnitude of the correlation. From the plot, it is clear that 

the target variable does not display any significant correlation with the features, and that most of the 

features are only weakly correlated with themselves. A few stronger correlations exists however, most 

notably between two pairs of balance-features; Balance Mean (L3M) with Balance Minimum Level 

(L3M), and Balance Differentiated Max Change (L3M with Balance Standard Deviation (L3M). It is quite 

expected that a pair of features related to the balance level and another pair related to the volatility 

display strong correlations. Over three months, if the average balance is high, the minimum balance 

level is often high. Conversely, if the balance standard deviation is high, the largest differentiated 

balance change tends to be high. These pairs of strong correlations could indicate that consumers 

behave relatively steadily over three months. Since these correlations are so strong, it would be 

difficult to include all of these features in a Logistic Regression model without violating the assumption 

of independent variables. However, for LightGBM, correlated features are less of an issue. 
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