ZEB Pilot buildings - overview

Klimax Breakfast Meeting
October 12, DIGS Trondheim

Inger Andresen, Professor NTNU
ZEB Research Activities

WP1 Advanced materials technologies

WP2 Climate-adapted low-energy envelope technologies

WP3 Energy supply systems and services

WP4 Use, operation, and implementation

WP5 Concepts and strategies and Pilot buildings

ZEB Living Lab

VIP Leca Isoblokk

Nano insulation material

Membrane heat exchanger

ZEB Pilot buildings

ZEB Definition
How to make a Zero Emission Building?

• What kind of cake
• Recipe
• Cooks
• Ingredients
ZEB ambition levels (what kind of cake)
From standard building to ZEB

kWh or GHG emissions per m² and year

- Existing average
- TEK'10
- TEK'16 passivhus
- TEK'20 nearly zero energy/emission
- TEK'25 Zero emission

Energy use for operation
Generation of renewable energy
Energy use for materials
ZEB Ambition levels (what kind of cake)

ZEB-O

![Graph showing ZEB ambition levels with categories: Materials, Construction, Use, Demolition, and axes for Production of renewable energy, Payback of CO₂, Use of energy, and Emission of CO₂.](image-url)
ZEB Ambition levels (what kind of cake)

ZEB-OM
ZEB Ambition levels (what kind of cake)

ZEB-COM

- Materials
- Construction
- Use
- Demolition

Production of renewable energy
Payback of CO₂

Use of energy
Emission of CO₂
ZEB definition (recipe)

2. THE ZEB BALANCE .. 7
 2.1 Net Zero Energy Buildings (Net ZEB) .. 7
 2.2 ZEB Emission Building (ZEB) .. 8
 2.2.1 ZEB Ambition Level Definitions and System Boundaries .. 8
 2.2.2 Components and materials included in the "M" .. 10
 2.2.3 Addressing Embodied Emissions at all Ambition Levels ... 13

3. OPERATIONAL ENERGY CALCULATION PROCEDURES .. 14
 3.1 Operational Energy and Emission Calculation Procedure .. 14
 3.2 CO₂ Conversion Factors .. 15
 3.2.1 CO₂ Factor for Grid Electricity ... 15
 3.2.2 CO₂ Factors for Bioenergy and Waste Incineration .. 17
 3.2.3 Summary of CO₂ Factors ... 18
 3.3 System Boundary for Operational Energy .. 19
 3.4 Mismatch of Generation and Demand .. 20
 3.5 Energy Efficiency Requirements ... 20
 3.6 Indoor Climate Requirements .. 20

4. LIFE CYCLE EMISSION CALCULATION PROCEDURES FOR MATERIALS 21
 4.1 Goal and Scope Definition .. 21
 4.1.1 Functional Unit ... 21
 4.1.2 System Boundary ... 22

Selamawit Mamo Fufa, Reidun Dehl Schienbusch, Kari Sørnes,
Marianne Inman and Inger Andresen

A Norwegian ZEB Definition Guideline
What kind of ingredients?
ZEB Pilot buildings - examples of ingredients
Net energy demand (netto energibehov) for operation kWh/(m^2år)
Insulation of exterior walls, $W/(m^2K)$

design values
Air leakage numbers, n_{50}

*green are design values, blue are measured values
Window area (% of heated floor area)
HVAC systems

<table>
<thead>
<tr>
<th>Project</th>
<th>System type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerhouse Kjørbo</td>
<td>Displacement ventilation. Centrally located shafts and radiators. Large thermal mass.</td>
</tr>
<tr>
<td>Powerhouse Brattørkaia</td>
<td>Displacement ventilation. Underfloor air supply. Large thermal mass.</td>
</tr>
<tr>
<td>FLO Haakonsvern</td>
<td>Mixing ventilation with active diffusers. Radiators in offices. Ventilation cooling.</td>
</tr>
<tr>
<td>Campus Evenstad</td>
<td>Hybrid ventilation, displacement. No cooling system.</td>
</tr>
<tr>
<td>Heimdal VGS</td>
<td>Displacement/mixing. Decentralised ventilation units.</td>
</tr>
<tr>
<td>ZEB House Larvik</td>
<td>Mixing ventilation. One radiator per floor.</td>
</tr>
<tr>
<td>Skarpnes</td>
<td>Mixing ventilation. One radiator per floor.</td>
</tr>
<tr>
<td>Zero Village Bergen</td>
<td>Mixing ventilation.</td>
</tr>
</tbody>
</table>
Ventilation heat recovery, %

*design values, average during operation
Renewable thermal supply

<table>
<thead>
<tr>
<th>Project</th>
<th>Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerhouse Kjørbo</td>
<td>Ground source heat pump + heat from servers</td>
</tr>
<tr>
<td>Powerhouse Brattørkaia</td>
<td>Sea water heat pump + district heat</td>
</tr>
<tr>
<td>FLO Haakonsvern</td>
<td>Sea water heat pump (from local central)</td>
</tr>
<tr>
<td>Campus Evenstad</td>
<td>CHP system based on gasification of wood chips</td>
</tr>
<tr>
<td>Heimdal VGS</td>
<td>CHP system with biogas, ground source heat pump</td>
</tr>
<tr>
<td>ZEB House Larvik</td>
<td>Ground source heat pump, greywater heat recovery, solar collectors, exhaust air heat pump</td>
</tr>
<tr>
<td>Skarpnes</td>
<td>Ground source heat pump</td>
</tr>
<tr>
<td>Zero Village Bergen</td>
<td>? Ground source heat pump or CHP</td>
</tr>
</tbody>
</table>

ZEB The Research Centre on Zero Emission Buildings
<table>
<thead>
<tr>
<th>Project</th>
<th>Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerhouse Kjørbo</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>Powerhouse Brattørkaia</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>FLO Haakonsvern</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>Campus Evenstad</td>
<td>CHP system based on gasification of wood chips</td>
</tr>
<tr>
<td>Heimdal VGS</td>
<td>Photovoltaics + CHP</td>
</tr>
<tr>
<td>ZEB House Larvik</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>Skarpnes</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>Zero Village Bergen</td>
<td>Photovoltaics (+CHP?)</td>
</tr>
</tbody>
</table>
Yearly output per m2 PV area, kWh/m2
Yearly output per m² floor area, kWh/m²

- PH Kjørbo
- PH Brattværkaia
- FLO Haakonsvern
- Heimdal VGS
- ZEB house Larvik
- Skarpnes
- Zero Village Bergen
- Living Lab
Embodied emissions in materials

kg CO$_2$-ekv/(m2yr)

- **PH Kjørbo**
- **ZEB house Larvik**
- **Heimdal VGS**

design values

- 69 Other renewable
- 49 PV system
- 43 Low voltage supply
- 36 Ventilation
- 28 Stairs
- 26 Outer roof
- 25 Structural deck
- 24 Inner walls
- 23 Outer walls
- 22 Superstructure
- 21 Groundwork and foundations
Short summary:
There are several paths to ZEB!
Open for registration now:

Nullutslippsbygg – Vi får det til!

TORSDAG 19. JANUAR 2017
SCANDIC NIDELVEN TRONDHEIM