

Statens vegvesen Norwegian Public Roads Administration

Identifying indicators for value for money in the front-end of road projects: Using National Transport Plan data from Norway and Sweden

James Odeck, NPRA, Norway Maria Börjesson, VTI, Sweden Johanna Jussila Hammes, VTI, Sweden Gro Holst Volden, NTNU, Norway Morten Welde, NTNU, Norway

Motivation

- Value for money as measured by the NPVs per Euro invested is an important and integral part of Norwegian/Swedish road planning processes.
- We observed that the number of projects with low/negative value for money being considered for investment at the National Transport Plan level was high in both countries.
- It seemed that one is caught up in optimizing low value for money rather than ensuring that projects with a low value are filtered out earlier at the front end in the planning process.

Planning process has many stages

Purpose

- Identify factors/characteristics that influences value for money of projects (NPV per Euro invested).
- Results can then be used at the front-end of projects to filter out projects that are most likely to have low value for money
- The literature has not provided such a guidance for use at front-end
- NOTE: The problem we are dealing with here is more about the use economic of principals in the management of resources.

- We use data from three Swedish and one Norwegian National transport plan period (initial number of observation: 1150)
- We add to the data set projects specific characteristics such as population density, centrality index, median income. We also added dummies for country, city and financing form.

Methodology

Statens vegvesen Norwegian Public Roads

- We use descriptive statistics
- Regression analyses (robust OLS):

NPV per invested $Euro_i = \alpha_0 + \beta_j X_i^j + \partial_m D_m + \epsilon_i$ for money (positively or negatively)

Logit analyses

$$P_{i} = \frac{e^{(\alpha_{0} + \beta_{j}X_{i}^{j} + \partial_{m}D_{m} + \epsilon_{i})}}{1 + e^{(\alpha_{0} + \beta_{j}X_{i}^{j} + \partial_{m}D_{m} + \epsilon_{i})}}$$
Factors that influence the probability that value for money will be positive(or negative)

In addition we did regression for benefit and investment cost separately

Results

(1) Swedish projects have higher value for money than Norwegian projects

(2) Smaller projects (<100 mill euro) have higher returns than bigger projects

Wilcoxon rank-sum (Mann–Whitney) test

25																
										Obs	Rank s	um	forventet		-	-
	•															
			Investment cost less than 100 mill Euro (dummy = 0)							216	89187	.5	79272			
20			Investement costs greater than 100 mill Euro (dummy = 1)							517	179823	3.5	189739			
20																
			Combin	ed						733	26901	.1	269011			
1 5 0			Test Statistics													
TOP			HU: NPV/Euro(cost_dummy=0) = NNB(cost_dummy=1)							2 704						
Ž	•		Z Droha IT	, 1						3.794						
.=										0.0001	Moo		Std dov			
u L	•									216	0 4172		1 240016	ו ס ב	VIIII	1VIdX 9 056151
101			Moon NDV/E for larger projects							517	0.41722	788	1.240910	-2.J _1	557	23 24
l Ja			Wicarriv							517	0.2430		1.725202			23.27
											y = -0.1	76lr	n(x) + 1.2	2601		
Γ ή	•										R	$^{2} = ($	0249			
5	•••												.0213	_		
0																
	C.C. 6.			•			•							_		
				<u> </u>			1		140	00 1	c000	100	00 20			
	20	900 4	000	6000	800	10 10	1000 I.	2000	140	00 I	6000	180	00 20	000		
	Ĩ.				Inv	estmes	t costs (uro)							
_5						counce	(0313		10)							
-5																

(3) Swedish projects carry more traffic, longer in length and cheaper

	A	ADT	Investmer	it costs pr km	Road length in km		
			l (mi	ll.Euro)			
	Norway	Sweden	Norway	Sweden	Norway	Sweden	
No. of obs	286	425	254	225	286	769	
Mean	5656	5817	13	4	7	10	
Min	0	0	6	0	0	0	
Max	90000	132830	37	25	82	100	
Stdev 11026		13963	5	4	14	10	
Test statistics							
Z	4.332		16.492		9.379		
Prob < z 0.000			0.000		0.000		
Test results Sweden > Norway			Sweden	< Norway	Sweden > Norway		

(4) Time savings account for 70 -90 % of benefits

■ Time savings ■ Savings in accident costs ■ Climate savings ■ Savings for freight transport

Statens vegvesen

Regression model results

(1) Final model with good explanatory power

Independent variable: Net benefit-cost ratio (nbcr)	Coef.	Std. Err.	t-value	ρ-value	[95% Conf.	interval]
_cons	-2.333	7.605	-0.310	0.759	-17.284	12.618
In(Aadt)	-3.976	0.850	-4.680	0.000 ***	* -5.647	-2.305
In(population density)	2.150	0.394	5.460	0.000 ***	* 1.377	2.924
Co-financed (1 if co-financed; 0 otherwise)	-0.309	0.153	-2.020	0.044 **	-0.611	-0.008
In(Median net income)	7.269	3.953	1.840	0.067 *	-0.502	15.040
In(Median net income) ²	-1.002	0.578	-1.730	0.084 *	-2.138	0.134
Metropolitan regions (1 if metroplitan; 0 otherwise)	0.435	0.174	2.490	0.013 **	0.092	0.777
In(Aadt) ²	0.323	0.057	5.680	0.000 ***	* 0.211	0.435
In(population density) ²	0.049	0.022	2.280	0.023 **	0.007	0.092
In(pop)x In(aadt)	-0.303	0.056	-5.400	0.000 ***	* -0.413	-0.193
Country dummy (1 if Sweden and 0 if Norway)	1.567	0.531	2.950	0.003 **	0.524	2.610
Adjusted R ²	0.460					
Prob>F	0.000					
RMSE	0.987					
number of obs	413					
- No of Norwegian obs	197					
- No of Swedish obs	216					

*** ρ < 0.01; ** ρ <0.05; * ρ < 0.1

(2) AADT is significant – influences both benefits and cost

AADT versus costs per km road

(3) Low benefits from projects in dense areas

The coefficient for population density is negative and significant.

Reason: extremely expensive to build in dense areas

• However: the interaction term between AADT and density is positive. The positive effect of AADT is greater than the negative effect of density.

(4) Co-funding e.g., tolling reduces value for money

The coefficient is negative and significant: a project with a return of 0.2 NPV/Euro invested will have a return 0.04 if funded by tolls.

Reason:

Efficiency loss is much greater than the reduction in government funding such that the total effect of tolling on value for money is negative

(5) Centrality matters – has positive impact

Not to be confused with density

A road project can high centrality e.g., a by pass, without being in a dense area.

Centrality has a positive effect on value for money Reason: Increases accessibility in between dense areas

Conclusion: some basic characteristics of a project likely to have high value for money

(1) Must have a minimum AADT of 6000

(2) Should not be financed by tolls

(3) Must be in central parts of the countries

(4) Should not be in cities/dense areas

Potential research topic: What explains the differences in investment costs between Norway and Sweden?

Administration

Thanks for listening

James.odeck@vegvesen.no