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Evaluation of Probabilistic Project Cost Estimates
Magne Jørgensen , Morten Welde , and Torleif Halkjelsvik

Abstract—Evaluation of cost estimates should be fair and give
incentives for accuracy. These goals, we argue, are challenged by
a lack of precision in what is meant by a cost estimate and the use
of evaluation measures that do not reward the most accurate cost
estimates. To improve the situation, we suggest the use of probabilis-
tic cost estimates and propose guidelines on how to evaluate such
estimates. The guidelines emphasize the importance of a match
between the type of cost estimate provided by the estimators and
the chosen cost evaluation measure, and the need for an evaluation
of both the calibration and the informativeness of the estimates. The
feasibility of the guidelines is exemplified in an analysis of a set of 69
large Norwegian governmental projects. The evaluation indicated
that the projects had quite accurate and unbiased P50 estimates
and that the prediction intervals were reasonably well-calibrated. It
also showed that the cost prediction intervals were noninformative
with respect to differences in cost uncertainty and, consequently,
not useful to identify projects with higher cost uncertainty. The
results demonstrate the usefulness of applying the proposed cost
estimation evaluation guidelines.

Index Terms—Cost distribution, cost estimation bias, cost
estimation error, cost overrun, cost prediction intervals,
probabilistic cost estimation.

I. INTRODUCTION

PROJECT cost estimates are essential input to, amongst
others, project plans, budgets, and bids [1]. Reports on

cost estimation performance claim that there is an unfortunate
tendency toward project cost overruns, see for example [2]–[7].
The strength of this tendency toward cost overruns varies from
report to report, which is not surprising given differences in
samples and contexts. In addition, the research that shows the
strongest tendency towards cost overrun, for example the re-
search reported in [2], [3], has been criticized for methodological
flaws, see for example [8]. Differences in reported accuracy and
bias may also be attributed to differences in the point of time of
producing the cost estimates and to differences in stabilities in
the project scopes [9].

The above complexities and problems related to aggregating
and evaluating cost estimation performance are clearly impor-
tant and need to be dealt with, but there are also other challenges
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in the evaluation of cost estimates. Two such challenges, which
motivate the work described in this article, are: if we are not clear
about what is meant by a “cost estimate,” it will be difficult to
properly evaluate how good it is; and evaluation measures should
give the best possible score to the best possible cost estimates,
i.e., they should reward unbiased cost estimates.

The first challenge, which is related to the current lack of
precision in what is meant by a cost estimate, has been pointed
out in, for example, [10], where the authors state that: “It may
be considered surprising that neither the Project Management
Body of Knowledge (2013) nor the Association of Project Man-
agement (2016) provide a definition for “cost overruns” or “cost
over-budget,” presumably assuming that its meaning is straight-
forward and its calculation clear.” As far as we have identified,
few studies on cost estimation accuracy and bias explicitly state
the precise meaning of the analyzed cost estimates. Instead, they
use general formulations such as “estimated costs are defined as
budgeted, or forecasted, construction costs at the time of decision
to build” [2, p. 281]; “Cost estimating could be defined as the
process where an estimator arrives at an expenditure of resources
necessary to complete a project in accordance with plans and
specifications” [4, p. 141]; or “a compilation of all the probable
costs of the elements of a project or effort included within an
agreed upon scope” [11, p. 35]. Other research studies include
no description of the intended meaning of the cost estimates
at all [12]. The situation seems to be similar to what Gneiting
describes as [13, p. 748]: “the common practice of requesting
‘some’ point forecast, and then evaluating the forecasters by
using ‘some’ (set of) scoring function(s), is not a meaningful
endeavor.” In this article, we argue that the use of a probabilistic
framework, i.e., the use of cost estimates referring to defined
points on cost outcome distributions, enables precision in what
is meant by cost estimate.

The second challenge is about finding meaningful and fair
ways of evaluating cost estimates, may be described as the
need for a match between the type of estimates provided by the
projects and the evaluation measures used to evaluate them. By
a match, we mean that the cost evaluation measure should give
the best expected score for the best possible cost estimates. It
should not reward misrepresentations and biased cost estimates.
An example of a possible lack of match is when the overrun
(bias) of estimates of the most likely cost of projects is evaluated
by use of the mean relative error.1 We explain the meaning and
importance of a match between the evaluation measure and the

1The reason for this is that, assuming a non-symmetric cost outcome distri-
bution, even when giving perfect estimates of the most likely costs (the mode
values of the cost distributions), we should expect a non-optimal score of cost
overrun if the evaluation measure is the mean relative error.
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type of estimate in more detail in Section II, along with a set
of evaluation measures and matching types of cost estimates.
This need for a match between measures and types of estimate
(proper scoring rules) is the same as pointed out in, for example,
[13], [14].

The main goal of this article is to address the above two
challenges by providing guidelines that support better evaluation
of cost estimates. Specifically, we advocate for the adoption of
probabilistic estimation, and we describe how the evaluation
measures can be matched to a given type of cost estimate. The
use of probabilistic estimates and matching evaluation measures
allows for fair evaluations that incentivize giving unbiased esti-
mates.

The rest of this article is organized as follows. Section II
starts by introducing how to use a probabilistic cost estimation
framework. It then proposes guidelines for better evaluation
of cost estimates. The section also includes information about
the scope of the guidelines and when it is meaningful to use
them. Section III exemplifies the use of the guidelines in the
cost estimates of 69 large governmental projects, all of them
using probabilistic cost estimates and meeting the conditions
for meaningful use of the guidelines. Section IV discusses the
use of the guidelines in relation to the dataset, including dis-
cussion on the implications for evaluation of cost estimates and
some limitations of the proposed guidelines. Finally, Section V
concludes this article.

II. GUIDELINES FOR THE EVALUATION OF COST ESTIMATES

This section starts with the presentation of a probabilistic
framework for cost estimates (see Section II-A). A probabilis-
tic framework, as argued in for example [15], is essential to
enable precise interpretation and communication of the in-
tended meaning of estimates. The section then provides guidance
on matching estimation evaluation measures to types of cost
estimates (see Section II-B), and how to evaluate both the
calibration and informativeness of cost prediction intervals and
distributions (see Section II-C). Note that there are several
challenges in the evaluation of cost estimates that are not covered
by the proposed guidelines, see for example [16] for information
about other challenges. Other challenges include those related
to project scope changes and the presence of cost estimates
given at different stages of the project lifecycle. The guidelines
proposed in this section assume that actual costs refer to com-
pleted projects that are comparable with estimated projects. The
guidelines also assume that the evaluation measures are used on
a set of cost estimates of a similar type and that they are derived
from a similar stage of a project’s lifecycle.

A. Probabilistic Framework for Cost Estimates

Consider a construction project where the cost outcome is
influenced by stochastic factors, such as labor availability, equip-
ment utilization, the weather, and mistakes. As these factors are
not fully under the control of the project management, one may
consider the final cost as a realization from a distribution of
potential cost outcomes. The actual cost of a hypothetical project
may, for example, be considered to be a number sampled from

a distribution similar to that depicted in Fig. 1.2 Here, there is
a 50 percent chance of sampling a final cost above EUR 27
million and a 90% chance of sampling a cost between EUR 12
million and EUR 62 million. The shaded area shows the density
probability distribution, and the S-curve displays the cumulative
probability distribution. The values displayed on the x-axis are
the mode, the median, the mean, and the 85th percentile (the
P85 value) of the cumulative probability distribution.

A cost estimate may in principle refer to any part of a cost
outcome distribution. Consequently, stating that we have esti-
mated the cost as, for example, EUR 20 million, provides limited
information. We cannot know whether the intended meaning of
the cost estimate is the most likely (mode), the median, the mean,
or some other point of the outcome distribution. Clearly, when
the intended meaning of cost estimates is unknown it is hard to
evaluate their accuracy and bias meaningfully.

Probabilistic estimates may be given as PX estimates, where X
is the percentile of the outcome distribution. We may, for exam-
ple, attempt to estimate the P50 (the median of the cost outcome
distribution), which can be used as input to a project plan, or
we could estimate the P85 (85% chance of no overrun) for the
purpose of obtaining a portfolio level budget. PX estimates can
be considered as both single-point cost estimates and one-sided
cost prediction intervals, i.e., the intervals from 0 to PX.

Probabilistic estimates may also be given as two-sided cost
prediction intervals (PIX), where the X value indicates the
likelihood of including the actual value in the interval. For
example, a nearly perfect PI90 for the project in Fig. 1 would
be the interval from EUR 11.9 million to EUR 61.7 million.
Finally, probabilistic estimates may be given as the complete
cost outcome distributions, such as the complete distribution in
Fig. 1.

The above terminology is the same as that used in other
management research [19], [20] and in statistics [15].

B. Evaluation of Single-Point Probabilistic Cost Estimates

A fair evaluation of estimation error should be based on a
match between the type of cost estimate evaluated and the error
measure. By a match, for the purpose of the present article, we
mean that the loss function implied by the error measure should
be minimized by the intended type of estimate [21], [22]. That
is, the evaluation measure should give the best possible score
for cost estimates when the estimated and true positions in the
cost distributions are the same.3 An alternative formulation of

2The hypothetical cost distribution in Fig. 1 follows a log-normal distribution
with parametersμ= 3.3 (mean), andσ= 0.5 (standard deviation). A log-normal
distribution may be a good fit for many real-life cost outcome distributions and
has the property that the mean cost is higher than the median cost, which is
higher than the most likely (mode) cost. Two other properties of log-normal
distributions that make them useful for cost distributions are that thy have only
positive values and that they are right-skewed. A right-skewed cost distribution
is consistent with that project cost can be much higher than estimated, but are
seldom much lower. While, for example, a 200% cost overrun is possible, a
200% cost underrun is impossible. More on the properties and the use of log-
normal distributions in cost estimation and other disciplines can be found in [17]
and [18].

3Formally, this match may be formulated such that the optimal single-point
probabilistic cost estimate (êst) from the estimated cost distribution F minimizes
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Fig. 1. Density and cumulative probability distribution of the cost of a hypothetical construction project.

the match criterion is that the best possible expected evaluation
score should be achieved when we have the best possible cost
estimates. The best possible cost estimates are here those that
perfectly represent the intended position in the cost outcome
distributions, e.g., estimates where the estimated P50 (median)
costs equal the actual P50 cost outcomes or the estimated mean
costs equal the actual mean cost. In other words, when we
request P50 cost estimates and the given estimates equal the
true P50 costs in the underlying cost uncertainty distributions,
this should give the optimal expected score for the appropriate
evaluation measure. An example of lack of match is when
the evaluation of the bias of P50 cost estimates applies the
mean error ( 1

N

∑N
i = 1(acti − esti)) as measure. In this case,

the expected mean error is not minimized by perfect estimates
of the P50 costs, but instead by perfect estimates of the mean
costs. To achieve a match between the type of estimates and the
evaluation measure in this example, we either have to request
estimates of the mean cost, or change the evaluation measure
to one that is minimized by the P50 cost. If this is not done,
we would not reward the provision of cost estimates that truly
reflect their intended probabilistic interpretation.

Table I gives a selection of cost estimation error measures and
matching type of cost estimates. The selection includes measures
in common use in the evaluation of cost estimation accuracy and
measures that match common single-point cost estimates such
as the mean and the P50 (median). Mathematical proof of the
match between the error measures and the type of estimates can
be found in the references provided in the second column of the
table.

One observation of particular interest is that the expected
value of the mean absolute relative error (absolute difference

the expected (E) loss (L), which is represented by the error measure, for the
distribution of actual cost G, i.e., êst = argminest EFL(est,G).

between estimated and actual divided by the estimated costs) is
not minimized by any common type of cost estimate. As given
in Table I, the minimizing type of cost estimate for this error
measure is far from intuitive. That is to say, the expected esti-
mation error is not minimized when providing perfect estimates
of the most likely cost, the median cost, or the mean cost, or, as
far as we know, any other type of cost estimate used in research
or practice. The use of the mean absolute relative error may for
this reason result in unfortunate cost estimation incentives and
is an example of a nonmatching evaluation measure.4

Table I gives measures of error (or accuracy), which calculate
error irrespective of whether the error represents overrun or
underrun, i.e., the unsigned error. For measures of bias (signed
error or magnitude of overrun/underrun), the scores can be either
positive or negative, and the best score is zero. A selection of
measures of bias with matching single-point estimates is given
in Table II. The presented bias measures are either in common
use or potentially useful as measures that match common types
of cost estimate. Unlike the error measures, we were unable to
find prior research studies with proof of the match. Our proofs
are given in Appendix 1.

Table II implies, amongst others, that it may be unfair to eval-
uate P50 cost estimates using the mean relative error. Assume,
for example, that we have a set of projects with a cost distribution
like the one displayed in Fig. 1, and that all projects used as their
estimates the true P50 estimate of the cost. Sampling from the

4Assuming the log-normal distribution in Fig. 1, which has the parametersμ=
3.3 (mean), and σ = 0.5 (standard deviation), the cost estimate that minimizes
the expected value of the mean absolute relative error can be shown to equal
eμ+σ2

= e3.3+0.52 = 34.8 million , which is the 69.1 percentile of the cost
distribution (for proof, see [23]). A cost estimate of EUR 34.8 million is higher
than both the mode (21 million), the median (27 million) and the mean (31
million) cost. The mean absolute relative error would consequently reward very
high cost estimates (higher than the mean cost), and be optimized by a type of
cost estimate that is difficult to interpret.
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TABLE I
ERROR MEASURES WITH MATCHING SINGLE-POINT ESTIMATES

TABLE II
BIAS MEASURES WITH MATCHING SINGLE-POINT ESTIMATES

cost uncertainty distribution in Fig. 1(we took 10.000 samples),
we find that even with perfect P50 estimates, i.e., the cost
estimates representing the median of the actual cost distribution,
there would be a bias toward cost overrun of around 13% when
using the mean relative error as the evaluation measure. Notice

also that a measure based on the median relative error would
give an expected bias of zero and establish a proper evaluation
of the performance of P50 cost estimates.

When evaluating the bias or accuracy of single point, proba-
bilistic cost estimates, the only information needed is the actual

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on August 11,2021 at 07:10:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JØRGENSEN et al.: EVALUATION OF PROBABILISTIC PROJECT COST ESTIMATES 5

cost and the estimated cost, where the estimated cost need to
include information of its intended location in the cost distri-
bution, i.e., its position in the estimated cost distribution. This
means that it is meaningful to evaluate the estimation accuracy
and bias of individual probabilistic cost estimate. This is not
the case for the evaluation of calibration and informativeness of
cost prediction intervals and cost probability distribution. Here,
we need a set of projects for meaningful evaluation. Exactly
how large set of projects we need depends on the purpose of the
evaluation and how confident one need to be in the evaluation
results. Less than 10–20 projects would, we believe, in most
cases lead to low robustness of the evaluation of calibration and
informativeness of prediction intervals and probability distribu-
tions.

C. Evaluating Prediction Intervals and Probability
Distributions

When probabilistic cost estimates are given as prediction
intervals or as full distributions, they are typically evaluated in
terms of calibration [25], [26]. If, for example, a set of 90%
cost prediction intervals (PI90) includes about 90% of the actual
cost values, the prediction intervals are considered to be well
calibrated, suggesting good cost estimation performance. While
the degree of calibration is useful information, we will argue that
this is not sufficient for a complete evaluation of the performance
of cost prediction intervals or probability distributions.

To enable a more complete evaluation, we propose the inclu-
sion of measures of informativeness. Informativeness, evaluated
together with calibration, may in this context be seen as related
to the “sharpness-subject-to-calibration” criterion, proposed by
Gneiting et al. [27]. That is, the ideal cost uncertainty estimate
is the one that is perfectly calibrated and with as narrow (sharp)
an estimated cost uncertainty distribution or prediction interval
as possible. Informativeness, as we use it here, is a more gen-
eral concept, including measures of informativeness other than
sharpness. It includes, for example, measures of how well the
variation in estimated cost uncertainty reflects the variation of
actual cost uncertainty.

1) Why is Informativeness Important?: Assume that three
estimators (A, B, and C) have been asked to provide the P50
estimates for a set of projects. For illustration purposes, assume
that these P50 estimates are perfect, i.e., they represent the true
median values of the underlying cost uncertainty distributions.
Additionally, the estimators are asked to provide P85 estimates
of the cost of these projects, which is required for budgeting
purposes. The estimators calculate P85 estimates by adding
cost contingency to the P50 estimate. Below, we show how the
three estimators apply different strategies that all succeed in
providing perfectly calibrated P85 estimates, but with substantial
differences in informativeness and need for contingency.

1) Perfect Estimator: This estimator correctly identifies the
individual risks (the complete, true underlying uncertainty
distributions) for each of the projects, i.e., this estimator
provides perfect P85 estimates based on contingencies
tailored for each individual project. Consequently, there
is an 85% probability that the actual cost of each project

is within the respective P85 estimates, and, in the long
run, the hit rate across multiple projects will be 85%.
The difference between projects contingencies represents
here the actual difference in cost uncertainty between the
projects.

2) Focused, Overall Uncertainty-Oriented Estimator:5 This
estimator is unable to assess the differences between
projects in their degree of uncertainty, but knows the
overall cost uncertainty and uses this to create the P85 es-
timates. For example, the estimator has access to historical
data and notes that 85% of previously completed projects
spent less than 130% of their P50 estimates of the cost.
To calculate the P85 estimates, the estimator multiplies all
P50 estimates by a factor of 1.3 to find the individual P85
estimates. This strategy will also result in a hit rate of 85%.
Treating the uncertainty of all projects the same, however,
means that the informativeness of the P85 estimates is low.
The estimates are, for example, not informative regarding
differences in cost uncertainty among the projects. The
median cost contingency required to achieve an 85% hit
rate will be higher than (or the same as) that of the perfect
estimator.6

3) Unfocused, Overall Uncertainty-Oriented Estimator:
Like the overall uncertainty-oriented estimator, this es-
timator has knowledge about the overall cost uncertainty
and is unable to identify the differences in cost uncertainty
between the projects. Unlike the focused estimator (B),
this estimator randomly varies the multiplication factor
around the factor representing the overall uncertainty.
This strategy may also lead to perfectly calibrated P85
estimates. It does, however, also lead to P85 estimates that
are even less informative (misleading variation in added
contingency) and a need for higher cost contingencies.

All the above uncertainty estimation strategies may lead to
perfect calibration, yet they produce cost estimates that vary sub-
stantially in informativeness. Furthermore, they differ in terms
of the magnitude of the contingencies needed to obtain good
calibration and illustrates the value of using informativeness as
an additional criterion in the evaluation of prediction intervals.

2) Measures of Calibration and Informativeness: Table III
gives a selection of measures of calibration, and informativeness
of cost prediction intervals and probability distributions. The
table includes frequently used measures, such as hit rate, to eval-
uate the calibration of prediction intervals [28], [29], along with
measures that are not in such common use. This is in particular
the case for measures enabling evaluation of the informativeness
of cost prediction intervals and distributions [30], [31].

The measures of hit rate, PIT, and PIT histogram are measures
of calibration. The measure of relative width and the correlation

5This is sometimes referred to as a climatologic forecaster, see for example
[27].

6The perfect estimator will be able to correctly identify the cost uncertainty
of all projects, which implies that the median cost contingency is given by the
project with the median highest (middle) cost uncertainty. This cost contingency
will typically be lower than that of the project with the 85% highest cost
uncertainty (the 85 percentile), which is the cost contingency used by the
estimators of type B or C.
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TABLE III
MEASURES OF CALIBRATION AND INFORMATIVENESS OF PREDICTION INTERVALS AND DISTRIBUTIONS
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Fig. 2. Norwegian QA scheme for governmental projects.

between the relative width and the estimation error indicate
the informativeness. The CRPS combines calibration and infor-
mativeness, measured as the sharpness of the cost uncertainty
distribution. The CRPS measure and the PIT-based measures
have, to our knowledge, not been used to evaluate probabilistic
project cost estimates before, but they are in common use in other
domains, such as in the evaluation of weather forecast models’
predictions [32].

III. EVALUATION OF COST ESTIMATES IN NORWEGIAN

GOVERNMENTAL PROJECTS

This section aims to exemplify the feasibility and usefulness
of the proposed evaluation guidelines by applying them on a
sample of large Norwegian governmental projects. The projects
used probabilistic cost estimates, the cost estimates were given
at about the same stage of the project lifecycle, all cost estimates
were given with the same intended probabilistic meaning, and,
to our knowledge, there were no large scope changes that could
explain large cost estimation errors. These projects consequently
meet the conditions for meaningful aggregation and evaluation
of cost estimation performance, and use of the proposed guide-
lines.

The analyzed projects and the process leading to the produc-
tion of probabilistic cost estimates are described in Section III-A,
followed by a report on the results from our evaluation of the
single-point probabilistic cost estimates in Section III-B, and the
results from our evaluation of the cost prediction intervals and
distributions in Section III-C.

A. Projects and Their Cost Estimates

The analyzed projects had all been subject to a comprehensive
governmental quality assurance (QA) scheme, which was com-
pulsory for projects with an expected cost exceeding about EUR
75 million. All projects produced probabilistic cost estimates as
input to budgets and project plans. Through the national research
program Concept,7 we obtained access to quality assured data
about the probabilistic cost estimates and the actual cost of
69 of these projects, which consisted of 35 road construction
projects, eight railway construction projects, fourteen building
construction projects, seven information system development
projects, and five procurement projects.

The QA scheme, requiring and supporting the production of
probabilistic cost estimates, was introduced in the year 2000
after years of large cost overruns and projects failing to deliver

7[Online]. Available: www.ntnu.no/concept

the intended effects. The QA scheme is a gateway model (see
Fig. 2).

The starting point of a project is a conceptual appraisal, where
the responsible department assesses the cost and benefits of
different alternatives and selects one of them. If the cabinet
decides to move forward, the details of the project may be further
developed for the chosen alternative. Before a project can be
submitted to the Parliament for approval and achieve funding, the
project must undergo a second round of external QA2. QA2 has
an emphasis on project management and cost estimation issues,
and produces, or at least checks the quality of, the probabilistic
cost estimates.

The QA work in QA2 is extensive, with a mean duration of
6.5 months [33]. Central to the cost estimation in QA2 is the
production of the P50 and P85 estimates of the cost, but the
full cost uncertainty distributions are also estimated. The P50
estimates of cost are used as input to the plans and budgets at
the project level, while the P85 estimates produced are used as
input to budgets at the portfolio level. We collected information
about the full cost distributions, including information about the
P10, P50, P85, P90 and mean cost estimates.

When interpreting the results from our analyses of the cost
estimates, the following should be considered.

1) The analyzed cost estimates are typically derived close to
projects’ start as part of QA2, and are likely to be less
uncertain than the earliest cost estimates for the projects.
The cost estimates are, however, derived before requesting
and accepting bids for the project work and/or selecting
providers. This means that even when the cost estimates
are based on thorough estimation processes, the remaining
cost uncertainty may be substantial.

2) The formal decision on whether to start the project occurs
after QA2. According to [34], there are reasons to be-
lieve that the implemented QA scheme and its connected
stage-gate decision model for project development have
been useful to stop weak project proposals and reduce the
risk of cost overruns. Bukkestein [35] reports that 7% of
projects have been stopped after QA2. This removal of
poorly planned and estimated projects may have increase
the expected accuracy of the remaining cost estimates
compared to other project contexts.

3) The method used to produce the probabilistic cost esti-
mates was typically based on requesting expert estimates
of the minimum (typically the P10 estimate), the most
likely (the mode), and the maximum (typically the P90
estimate) cost of all cost elements, together with identi-
fying and assessing cost risk elements. The estimates of
cost elements and risks were typically aggregated to find
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TABLE IV
ESTIMATION ERROR AND BIAS OF THE P50 ESTIMATES

the cost estimate of the total project using Monte Carlo
simulations. While the estimation and aggregation process
may be systematic and based on robust statistical theory,
the realism of the cost estimates will rely on the quality of
the input from the estimation experts’ judgments.

4) The average duration between estimation of the cost and
completion of the project was seven years. To enable a
fair comparison of the estimated and the actual cost, using
domain-specific cost indexes, we index regulated the cost
estimates and actual costs to reflect the completion year
of each project. The index regulation of the estimated and
actual cost led to a mean increase in cost of 27%, i.e.,
typically around a 3% index-regulated cost increase per
elapsed year. Without this index-regulation the measured
level of cost overrun would have been larger, but mislead-
ing.

B. Estimation Error and Bias of Single-Point Estimates

As described earlier, the P50 estimate was used as input to the
budget at the project level, while the P85 estimate was used as
input to the budget at the portfolio level. We chose not to evaluate
the P85 estimate as a single-point cost estimate, but will later
evaluate it as a one-sided prediction interval. The reason for this
is that meaningful (matching) evaluation of a P85 single-point
cost estimate would require the use of an error measure where
one cost unit overrun is close to 5.7 ( = 85%/15%) times worse
than one cost unit underrun.8 To assume this type of loss function
was deemed not meaningful in our context.

Table IV gives the projects’ estimation error and bias using
measures that match the P50 type of cost estimate.

As given in Table IV, the mean log-error is 15%. Whether we
should consider this as indicating a good estimation performance
requires knowledge about the underlying cost uncertainty. To
illustrate that a mean log-error of 15% can reflect very accurate

8The only accuracy evaluation measure matching a single-point P85 estimate,

see [36], is 1
N

∑N

i=1

{
0.85 · |acti − esti|, if esti ≤ acti
0.15 · |acti − esti|, otherwise

cost estimates, consider the cost outcome distribution in Fig. 3.
Fig. 3 exemplifies a cost uncertainty distribution where perfect
P50 estimates of costs lead to an expectation of 15% estimation
error. For the cost distribution in Fig. 3, it is 67 percent probable
(one standard deviation) that the actual cost is between 80% and
120% of the perfect P50 estimate, and 90% likely that the actual
cost is between 70% and 140% of the perfect P50 estimate. Cost
distributions with this level of uncertainty may not be unusual for
the types of large project included in our dataset, which means
that an estimation error of 15% may in fact indicate very high
estimation accuracy. Clearly, it is unlikely that the P50 estimates
of the projects in our dataset are perfect. The above analysis,
nevertheless, suggests that much of the estimation error is caused
by an underlying cost uncertainty, and cannot be used to claim
low estimation performance. Without knowing the underlying
cost uncertainty, it is hard to evaluate exactly how good the
estimation performance is in terms of accuracy.

A more traditional way of assessing the cost estimation perfor-
mance is to compare it with that found in other studies. Using this
approach, we may argue that the cost estimation error for the ana-
lyzed projects is low, since it is better than that reported in several
other studies on project costs or effort estimates. For example,
the review paper [37], reports an aggregated median estimation
error of 25% and the analysis of Dutch infrastructure projects in
the work of Cantarelli et al. [38] suggests a mean estimation error
of 29%. However, it may be difficult to meaningfully compare
estimation performances across different studies, because the
nature of the estimates may differ substantially (different types
of cost estimates, early versus late estimates, different degrees of
cost uncertainty in different industries, different possibilities to
adapt the deliveries to fit the budgeted cost, etc.). In addition, as
pointed out earlier, most earlier studies do not describe what is
meant by cost estimates, for example whether the cost estimates
represent the most likely cost, the P50 cost, the P85 cost, or a
mix of different types of estimates.

Perfect P50 estimates of cost should lead to zero bias when
using a matching evaluation measure. Table IV gives that the cost
estimation bias of the analyzed projects is close to this optimum,
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Fig 3. Example of a cost uncertainty distribution with perfect P50 estimates leading to an estimation error of 15%.

with both median relative error and median log-error measured
as 4%. The bias is not statistically significantly different from
zero (p = 0.52, Wilcoxon signed-rank test). A median overrun
of 4%is substantially better than is typically reported for other
projects of similar type. For example, the mean cost overrun
reported in [3] was 45% for railway construction projects and
20 percent for road construction (however, see the critique of this
analysis in [8]), and the median overrun reported in the review
paper [37] was 21%.

The distribution of the cost estimation bias of the projects
is displayed in Fig. 4. Fig. 4 shows a longer tail toward cost
underruns than overruns, and that there were no very large
overruns. The largest overrun had a log-error of 31% (relative
error of 37%). The mean absolute log-error of projects with cost
underruns was 18%, which was larger than the mean absolute
log-error of projects with cost overruns, calculated as 12%. This
result deviates from what is found in other studies, where cost
overruns tend to be larger than cost underruns, see for example
[39]–[41]. The current result may indicate that the QA process
has been successful in improving cost realism and/or stopping
projects with over-optimistic cost estimates.

A mean bias close to zero is, however, not necessarily an indi-
cator of good estimation performance. In our case, as displayed
in Fig. 5 , the earliest projects (starting in the period 2001–2003)
had a mean underrun of 16%, while the later projects (starting in
the period 2010–2012) had a mean overrun of 8%. It was mainly
in the middle periods (2004–2006 and 2007–2009) that the cost
estimation bias was low. The bias toward cost overruns in the

last period compensated for the bias toward cost underruns in
the earlier projects and resulted in low overall cost estimation
bias, which demonstrates that measures of cost estimation bias
should be analyzed and interpreted carefully.

C. Calibration and Informativeness of Prediction Intervals
and Distributions

Table V gives measures of the calibration and informativeness
of the cost estimates for the projects. The PIT and CRPS values
require information about the full cost distributions, which were
derived by fitting log-normal distributions to each project’s esti-
mates of the P50, P90, and the mean cost, using the distribution
fitting functionality in the risk analysis tool @Risk.

The best calibrated PX interval in Table V was the P50 inter-
val, which included 42%of projects’ actual costs. The difference
between the hit rate of 42%and the norm (50%) was not statisti-
cally significant (p = 0.23). The P50 estimates of cost were used
for projects’ plans and budgets, and it was particularly important
that these estimates were well calibrated. However, the relatively
good calibration hid the fact that the P50 cost estimates, together
with the P10, P85, and P90 cost estimates, had been too high
for the first projects (starting in the period 2001–2003) and too
low for the later projects (starting in the period 2010–2012, see
Fig. 6). Had the PX estimates been better calibrated for the last
period, the total calibration would actually look worse. As with
the measurement of estimation bias (where our median-based
analysis of the P50 estimate correspond closely with the above
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Fig. 4. Histogram of the estimation error (log-error).

Fig. 5. Boxplot of cost estimation bias of different time periods.

analysis of the P50 interval), good performance on calibration
may hide underlying biases.

The PIT histogram in Fig. 7 shows the calibration of the full
distribution. A perfectly calibrated estimated cost distribution
would give a uniform histogram. The shape of the histogram in
Fig. 7 suggests that there were too many actual costs lower than
the lower PX-values and too many higher than the higher PX-
values, i.e., the estimated cost distributions tend to be too narrow
to reflect the actual cost uncertainty.

Table V gives a correlation between the relative width (as an
indicator of the estimated cost uncertainty) and the estimation
error (as an indicator of the actual cost uncertainty) of -0.02. This

suggests a very low, or perhaps no, ability to separate projects
with low and high cost uncertainty, i.e., the prediction intervals
contained little, if any, information about differences in the cost
uncertainty of the projects. Fig. 8, which includes a smoothed
line based on a locally weighted scatterplot smoothing function
(degree of smoothing 0.5, number of steps 4) further illustrates
this lack of correlation.

It is difficult interpret the scores in Table V on relative width
and the CRPS in terms of estimation performance without com-
parable values from other datasets. These scores may however
be useful for comparing the performance of the actual estimates
with alternative estimation strategies. This is what we do below.
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Fig. 6. Hit rates over time.

Fig. 7. Histogram of PIT values.

1) Comparison With (Hypothetical) Estimates Provided by a
Focused, Overall Uncertainty-Oriented Estimator: As pointed
out in Section II-C-1, a focused overall uncertainty-oriented
estimator gives perfectly calibrated prediction intervals without
being able to separate low and high cost uncertainty projects. If
the results from the use of that strategy are similar to our cost
uncertainty estimation results, this suggests that the current (ex-
pensive) cost uncertainty estimation process could be replaced
by a much simpler process. In addition, it might suggest that
the estimators provided estimates using such a non-informative
strategy.

We implemented the focused overall uncertainty-oriented
strategy for the analyzed projects by assuming that the

(hypothetical) estimators had information about the overall
(aggregated) cost uncertainty of the projects, and used this to
provide new PX estimates. This may have been the case if,
for example, the estimator knew based on her/his experience
that 85%of prior projects had an actual cost of less than X
times the estimated most likely cost, and they multiplied all
estimates of the most likely cost with a factor of X to find the
P85 estimate. We derived the overall cost uncertainty distribu-
tion by fitting different types of distribution to the actual cost
estimation error data. The best fit was for a normal distribution
with μ = 0.05 and σ = 0.20, where multiplying the estimate
of the most likely cost by 1.20 would give the P85 value (the 85th
percentile).
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TABLE V
CALIBRATION AND INFORMATIVENESS

We applied this focused, overall uncertainty-oriented strategy
using the estimated most likely cost and assuming the fitted
cost uncertainty distribution for all projects. This gave better
calibration results, but worse informativeness results, than was
the case for the actual cost uncertainty estimates.

1) Calibration: The P10 estimates from our hypothetical
estimator had a hit rate of 13% instead of 19%, the P50
estimates had a hit rate of 48% instead of 42%, the P85
estimates had a hit rate of 90% instead of 75%, and the
P90 estimates had a hit rate of 93% instead of 80%.
These data demonstrate a clear improvement in calibra-
tion by use of the focused, overall uncertainty-oriented
strategy.

2) Informativeness: The 80% prediction intervals had a rel-
ative width of 0.49 for all projects, and there was conse-
quently zero correlation between the estimated and actual

cost uncertainty. While a correlation of zero is similar to
that of the analyzed projects, a mean relative width of the
80% prediction interval of 0.49 is substantially higher than
the mean relative width of 0.29 of the analyzed projects
(Wilcoxon signed-rank test of median differences of rela-
tive width gives p<0.001). This lower informativeness is,
as expected, connected with higher P85 estimates. While
the required contingency, when going from the most likely
cost to the P85 estimate, was 26% when using the overall
uncertainty-oriented, the actual mean contingency was
only 13%.

The CRPS score for the focused, overall uncertainty-oriented
strategy is better than that of the actual projects, with a median
value of 88 compared to the previously found value of 109.
This difference is statistically significant (Wilcoxon signed-rank
test of median differences of the CRPS scores gives p<0.001)
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Fig. 8. Association between the estimated (as indicated by the relative width of the 80% prediction interval) and the actual cost uncertainty (as indicated by the
absolute value of the log-error).

but hard to interpret, as the CRPS score reflects a weighted
combination of the estimates’ calibration and informativeness.

In total, the use of a simple focused, overall uncertainty-
oriented strategy led to near-perfect calibration at the cost of
wider cost distributions and a need for higher cost contingencies.
This means that even though the estimates of cost uncertainty
in the analyzed set of projects have clear improvement po-
tential, the organizations may not benefit from replacing the
current estimation process with the simpler, focused, overall
uncertainty-oriented strategy.

IV. IMPLICATIONS AND LIMITATIONS

We have argued that the use of probabilistic cost estimates
supports the need for more precise interpretation and commu-
nication of what is meant by a cost estimate. The use of such
estimates also enables us to analyze the match between the type
of estimate and the chosen cost estimation evaluation measure,
and to analyze characteristics of the cost prediction intervals
and cost distributions. This section discusses implications of
the proposed guidelines on how to evaluate probabilistic cost
estimates (see Section IV-A) and the limitations of the proposed
guidelines (see Section IV-B).

A. Implications

The guidelines require the use of probabilistic cost estimates.
There is much literature on how to establish probabilistic frame-
works for predictions, see for example [20], [42]. Without the
use of such cost estimates, it is hard to see how cost esti-
mates can be given a precise meaning and how one can assess
the meaningfulness and fairness of cost estimation evaluation
measures. Thus, a key message of the present article is to
avoid the common practice of obtaining “some” cost estimates
with unknown interpretations and evaluating them with “some”

accuracy or bias measure without knowing to what extent the
evaluation gives a fair and unbiased evaluation. An advantage
of using a probabilistic cost estimation framework is that it may
remind the evaluator on that even the best cost estimates will not
have an expected estimation error of zero. The lowest achievable
estimation error increases as a function of the level of uncertainty
in the projects. An implication of this is that, whenever possible,
an evaluation of cost estimation error performance should take
into account the level of underlying cost uncertainty.

The proposed criterion of a match between the type of cost
estimate and the evaluation measure has several implications
for the use of evaluation measures in industry and research. The
main implication is that without a match between estimates and
evaluation measures, we will not know to what extent measured
cost overruns and errors are results of true estimation bias and
error, or just inappropriate use of evaluation measures. Not only
will this be unfortunate for the interpretation of the measure-
ments, but it may also establish unfortunate incentives where the
estimators are rewarded for underestimating or overestimating
the cost.

An example of lack of match, with potential unfortunate
incentives, is the use of the error measure mean absolute relative
error ( 1

N

∑N
i = 1

|acti−esti|
esti

). This error measure is not mini-
mized by any commonly used type of cost estimate. If the cost
uncertainty, for example, is log-normally distributed,9 the type
of estimate that minimizes the error is higher than both the mean
and the median cost. Estimators will consequently typically be
rewarded for over-estimation of the mean and the median cost.
If the cost uncertainty is high and strongly non-symmetric, this
evaluation may reward strongly biased cost estimates. Corre-
spondingly, when dividing by the actual instead of the estimated

9See previous discussion on the good fit of log-normal distributions, and
also [18].
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cost ( 1
N

∑N
i = 1

|acti−esti|
acti

), which also is an error measure in
common use, the type of estimate that minimizes the error is
lower than both the mean and the median cost.10 In this case the
evaluation measure rewards under-estimation of the cost. The
use of any of the two versions of the mean absolute relative error
is not advisable, because they do not match any common or well-
defined types of point estimates. We recommend instead the use
of the mean absolute log-error ( 1

N

∑N
i = 1 |ln(acti)− ln(esti)|),

which has a match with estimates of the median cost (P50
estimates).

There are similar implications for the evaluation of cost
estimation bias. We have, for example, that the bias measure
mean relative error ( 1

N

∑N
i = 1

(acti−esti)
esti

) should only be used
when the intended meaning of the estimate is the mean (ex-
pected) cost. Note that this match between evaluation measure
and type of estimate is no longer the case if we divide by
the actual instead of the estimated cost, which is common in
some contexts, see for example [43].11 This measure, i.e., the
measure ( 1

N

∑N
i = 1

(acti−esti)
acti

), is consequently not advisable
to use as measure of cost overruns. When the intended meaning
of the estimates is the median cost, i.e., when we use P50 cost
estimates, we will have a match for the bias measure median
relative error. In this case, the use of mean relative error will
give unfortunate incentives and misleading evaluations.

All types of PX cost estimates, e.g., P10 and P90 cost
estimates, may in principle be evaluated as single-point cost
estimates. Unfortunately, the only matching error measure for
single-point cost estimates on the PX format, see [36], is:
1
N

∑N
i = 1{

α · |acti − esti|, if esti ≤ acti
(1− α) · |acti − esti|, otherwise, where α is the

estimated quantile (X-value of the PX-estimate). For example,
in the case of P85 estimates

1

N

N∑
i = 1

{
0.85 · |acti − esti| , if esti ≤ acti
0.15 · |acti − esti| , otherwise.

This error measure is only meaningful when we believe that
overrunning the PX estimate should give an error penalty α
/(1- α) times higher than that of underrunning it. For example,
to use this measure for P85 cost estimates, we should agree on
that overrunning the P85 cost estimate with one cost unit is 5.67
(0.85/0.15) times worse than underrunning it with one unit. This
is not necessarily the case and many types of PX estimates should
for this reason only be evaluated with respect to calibration and
informativeness. As there, in general, are no other matching
error measure for PX cost estimates, the commonly used cost
estimation error measures should not be used for these cost
estimates. The exception here is, of course, the use of the P50
cost estimates, which, as described above, has other matching
error measures.

10The minimizing estimate for a log-normal distribution equals in this case
eμ+σ2

, where μ is the mean and σ is the standard deviation of the distribution.
11In this case, no common understandings of cost estimates would give a

match. Perfect estimates of the mean cost with actual cost as the denominator,
for example, would give the expectation of a mean relative error (cost overrun)

of approx. Var(act)

μ2 , see [44].

Our study of the Norwegian projects resulted in additional im-
plications for proper evaluation of cost estimates. In particular,
we found that a good score on mean or median cost estimation
bias needed in-depth analysis to be used as an indicator of good
estimation performance. In our project dataset, the low average
cost overrun was caused by the presence of substantial cost
underrun of the early projects, compensated by substantial cost
overruns of the later projects. In this case, most estimates were
biased, but there was a change in the direction of the bias over
time. Had the cost estimates of the later projects been unbiased,
the total bias would have been worse. We recommend, for this
reason, the use of trend analyses to get better insight into how
low (or high) cost overruns have been achieved.

Our guidelines also imply potential for improvements in the
evaluation of cost prediction intervals and distributions. Our
most important point is that the evaluations should be extended
to include informativeness. Traditionally, the evaluation of cost
prediction intervals has focused on calibration, i.e., on compar-
ing the stated confidence level with the actual inclusion rate (hit
rate). The analysis of the data in the case study demonstrates that
good calibration is not sufficient to claim high performance on
cost prediction intervals. In addition to calibration, the predic-
tion intervals and distributions should be evaluated in terms of
informativeness, such as the correlation between indicators of
estimated and the actual cost uncertainty. An important reason
for the need to evaluate informativeness is that there are simple
uncertainty assessment strategies that achieve close to perfectly
calibrated cost prediction intervals but are non-informative about
differences in underlying cost uncertainty.

An alternative to reporting both calibration and informative-
ness is to use a measure that combines calibration and infor-
mativeness, such as the CRPS measure. As this combination-
based evaluation measures imply predefined weighting of the
importance of each factor, we find that reporting both calibration
and informativeness separately is likely to be the better option,
leaving it to the user to weigh their relative importance.

B. Limitations

There are several topics that are outside the scope of the
guidelines presented in this article. Amongst others, the guide-
lines do not address how to produce probabilistic cost estimates,
they do not cover all aspects of what is needed to properly
evaluate probabilistic cost estimates, and they do not address
how to analyze the reasons for low and high cost estimation
performance. These topics are important to succeed with better
cost estimation and there is a need for more research on all of
them.

We chose not to include much discussions on the relationship
between the choice of evaluation measure and loss functions.
If an organization evaluates cost estimates in terms of the ac-
curacy measure mean absolute error ( 1

N

∑N
i = 1 |acti − esti|),

it chooses a loss function that penalizes cost overruns just as
much as cost underruns. This may not reflect the true losses of the
organization, which may prefer cost underruns to overruns. In
spite of the intuitive appeal of selecting cost evaluation measures
that reflect the true loss function of an organization, work on this
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has not been very promising. True loss functions turn out to be
difficult to formulate. Furthermore, they vary over time, they
vary between and within organizations, and the corresponding
evaluation measures may be difficult to understand, see for
example [45]. It may, nevertheless, be useful to reflect on the
implied loss situation when selecting a cost estimation evalua-
tion measure.

Probabilistic cost estimates enable precise communication
of cost estimates and provide a framework for matching types
of estimate and evaluation measures, but may also be difficult
to understand and use. As an illustration, the CEO of a large
Norwegian government agency reported that all of their projects
in the last five years had an actual cost below their portfolio level
budget, which was based on their P85 estimates of the cost.
While a 100% hit rate of P85 estimates is a strong indication of
overestimation, the CEO’s conclusion was that this showed that
his organization had been very good at managing its projects
[46]. To understand and use probabilistic frameworks properly
may require some training, see [47] for an overview of some of
the challenges and possible solutions to improved understanding
and use of probabilities. While the complexity related to the
understanding and use of probabilities is a real challenge, we
believe that there is no proper way around the use and evaluation
of it, unless we want to continue using cost estimates with
unknown meaning and select evaluation measures that do not
reward the most realistic cost estimates.

V. CONCLUSION

To carry out meaningful cost estimation evaluations, we need
to know what was meant by the cost estimates and to had a
proper evaluation framework. In this article, we argue that the
use of probabilistic cost estimates enables precision in commu-
nicating what was meant by the estimated cost, and supports
the implementation of fair cost estimation evaluation measures.
We propose a match criterion for measures of cost estimation
accuracy and bias. This match criterion implies that measures
of estimation error and bias should give the optimal scores to
the best possible cost estimates. Best possible cost estimates are
here understood as estimates that are perfect representations of
the intended position in the underlying cost distributions. It was,
for example, the case when the estimated mean costs of a set of
projects equals the actual mean costs of the projects’ underlying
cost distributions. We also propose that cost prediction intervals
and distributions should not only be evaluated with respect
to calibration, but also include an evaluation of informative-
ness. This point is particularly important because evaluation of
calibration alone fails to distinguish between estimators with
and without ability to separate projects with high and low cost
uncertainty.

The feasibility of the proposed evaluation guidelines was
examined through an analysis of probabilistic cost estimates
from 69 large Norwegian governmental projects. The analysis
supported the feasibility and usefulness of the guidelines. We
conclude that the proposed guidelines, applied on probabilistic
cost estimates, are promising in providing guidance for meaning-
ful, fair, and useful evaluation of cost estimation performance.

APPENDIX

1) [ 1N
∑N

i=1(acti − μi)] = 1
N · [E(act1 − μ1) + . . .+

E(actN − μN )] = 1
N · [E(act1)− E(μ1) + . . .+

E(actN )− E(μN )] = 1
N · [E(μ1)− E(μ1) + . . .+

E(μN )− E(μN )] = 0, where E(X) is the expected value
of X and μi is the mean value of cost distribution i.
E(X+Y) = E(X)+E(Y) due to linearity of the mean values
for independent distributions.

2) When using the median as the estimate, there is an equal
probability of actual costs being higher or lower than
the estimate. We then have the expectation that half of
the actual values will be higher and half will be lower
than the median, and that the median difference will be
zero. This does not change when dividing the difference
by estimated cost or log-transforming the values.

3) E[ 1N
∑N

i=1
(acti−µi)

µi
] = 1

N · [E( act1−µ1

µ1
) + . . .+

E( actN−µN

µN
)] = 1

N · [E(act1 − μ1) · E( 1
µ1
) + . . .+

E(actN − μN ) · E( 1
µN

)] = 1
N · [(E(μ1)− E(μ1)) ·

E( 1
µ1
) + . . .+ (E(μN )− E(μN )) · E( 1

µN
)] = 0.
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