FROST HEAVE MODEL IN A PAVEMENT DESIGN PROGRAM - ERAPAVE PP

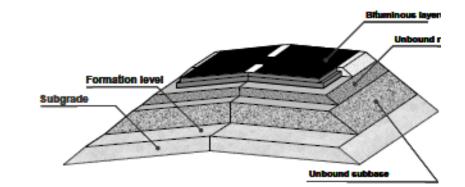
Abubeker Ahmed

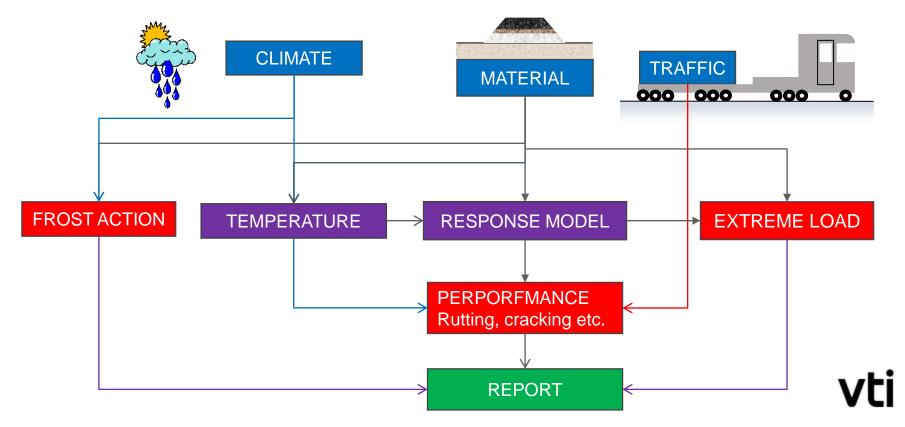
BCRRA, 2022-06-27, Trondheim

OUTLINE

- Background
- ERAPave PP Damage models
- Component models
 - Mechanical response and Temperature models
- Frost heave model
- Validation frost heave model
- Ongoing works

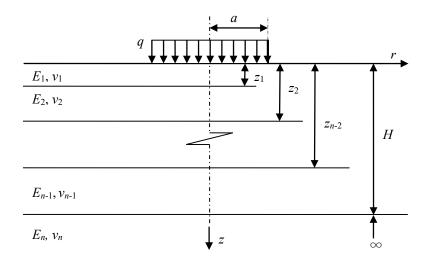
BACKGROUND


- Pavement design in Sweden is carried out using PMS Objekt:
 - permanent deformation is assumed to originate only from the subgrade
 - a simplified characterization of materials and traffic is employed
- ERAPave PP is being developed with the objectives:
 - improve the permanent deformation prediction for each pavement layer including the subgrade
 - a better characterization of materials as well as traffic



DAMAGE MODELS IN ERAPAVE PP

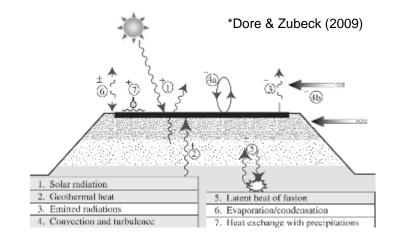
- ERAPave PP establishes layer types and thicknesses:
 - to limit damage (to acceptable levels), for anticipated loading and environmental conditions using available/selected materials
 - damage including in ERAPave PP are:
 - rutting (deformation)
 - wear due to studded tire
 - fatigue cracking
 - · damage due to extreme loading
 - frost damage



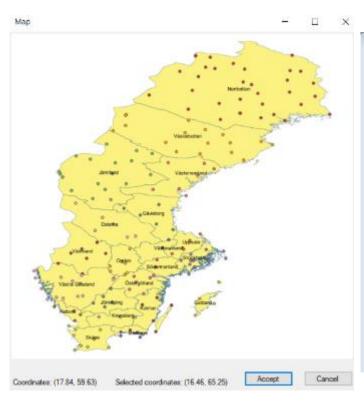
ERAPAVE PP COMPONENTS

MECHANICAL MODEL - RESPONSE

- Layered elastic theory is used to estimate stresses ands strains
- Modulus and poisons ratio of each layer are the input parameters
- A circular contact area is assumed for the analysis
- No direct link with frost heave model



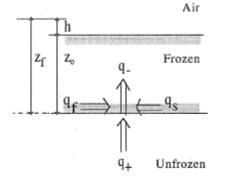
TEMPERATURE MODEL


- Main heat transfer modes considered:
 - Conduction/convection
 - Radiation

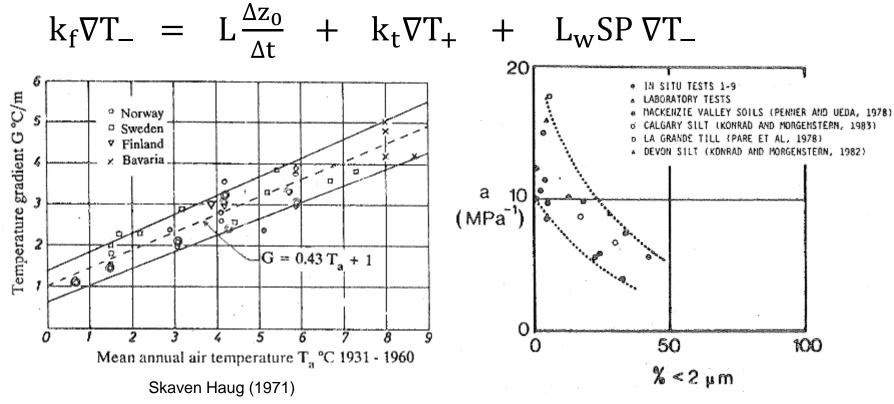
$$\frac{\partial^2 T}{\partial z^2} = \frac{\rho c}{k} \frac{\partial T}{\partial t}$$

 A numerical approach based on finite control volume (FCVM) is employed.

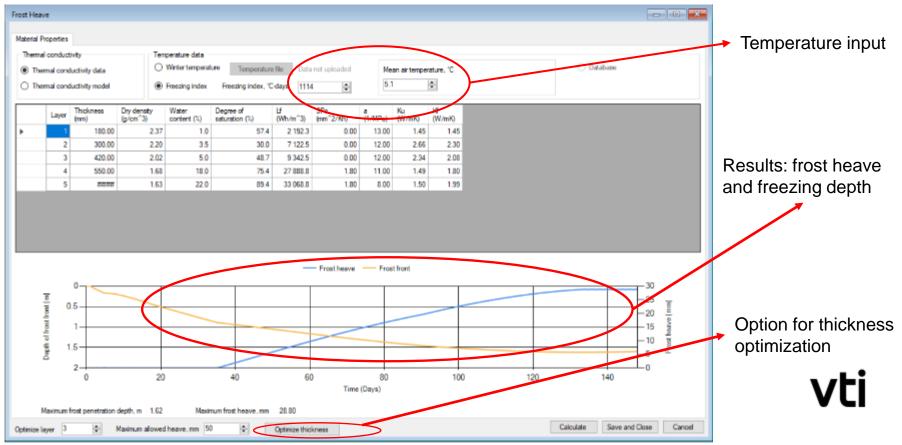
TEMPERATURE MODEL CONT.



SSR FROST HEAVE MODEL IN ERAPAVE


Thermal balance at the freezing front.

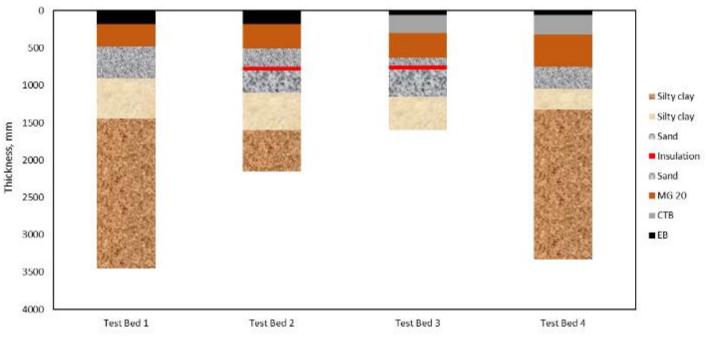
$$k_{f}\nabla T_{-} = L\frac{\Delta z_{0}}{\Delta t} + k_{t}\nabla T_{+} + L_{w}SP\nabla T_{-}$$
Stefan (1889)
Skaven Haug (1971)
Konrad &
Morgenstern (1981)


- Thermal properties frozen and unfrozen
- Volumetric property
- Latent heat
- Segregation Potential, SP
- % fine content

GROUND TEMPERATURE GRADIANT

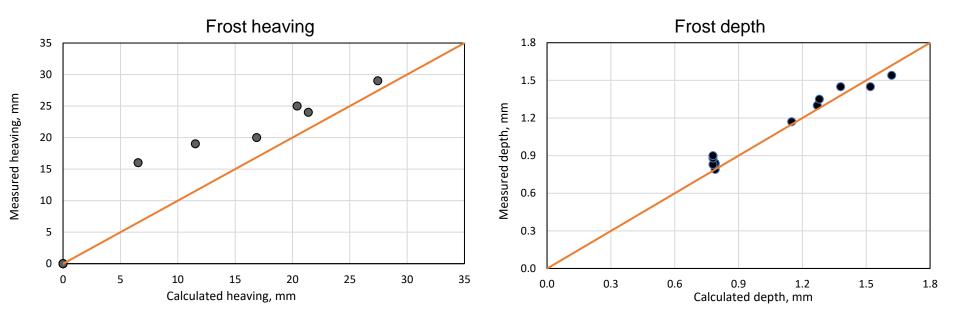
Knutsson et al. (1985)

FROST HEAVE INTERFACE

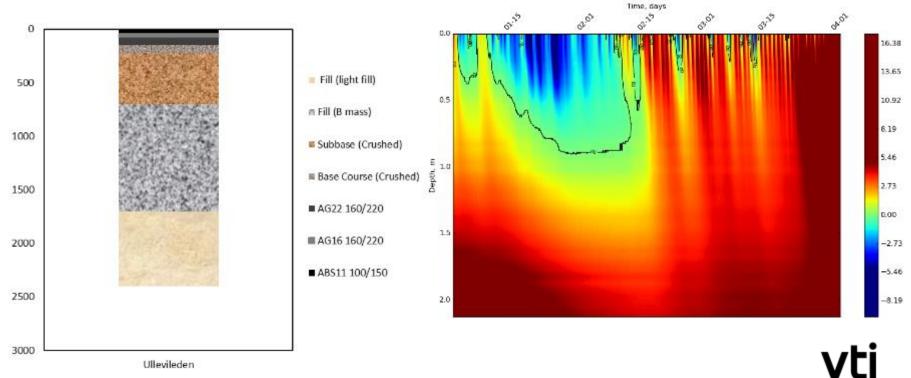

MATERIAL DATABASE

VTI and NTNU - collecting data for various pavement materials

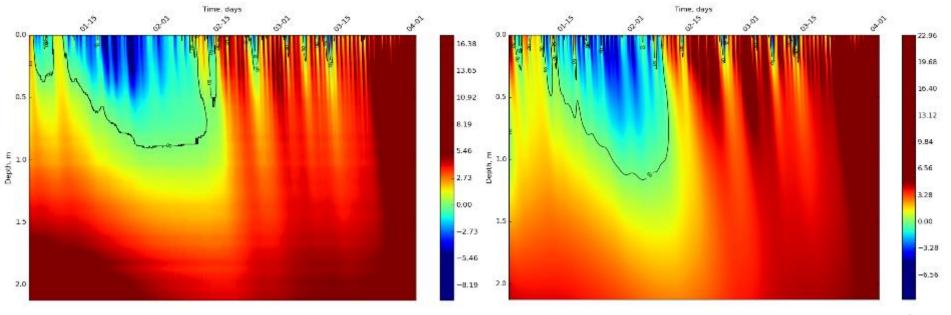
	ciure Vi	ew or edit material pro	perties		Material*	dry density (pd)	grain density (ps)	porosity (
					Superstructure material	kg/m3	kg/m3	(%)
avement layer types and thicknesses					Bitumen-bound bearing and wear layers as well as tie layers	2200	2650	0.17
	Laver	Material	Thickness (mm)		Bitumen-soaked macadam, upper bitumen-rich	2100	2650	0.21
	1	ABT 16 70/100			Bitumen-soaked macadam, lower bitumen-poor	2100	2650	0.21
•			Add layer	×		2400	2650	0.09
	2	ABb16 70/100			Cement-bound base layer	2400	2650	0.09
	3	AG22160/220			Unbound base layer	2000	2650	0.25
	4	GW-CR	 Btuminous materials 		Older bearings	2000	2650	0.25
	5	GM-CR	Select material	ABT11 100/150	Reinforcement layer paved road (crushed and unbroken)	2000	2650	0.25
	-			ABT11 100/150	Reinforcement layer gravel road	1800	2650	0.32
	6	4e - Lera	Add layer over	ABT11 70/100	Reinforcement layer unbound rock crusher	2000	2650	0.25
				ABT16 70/100 ABS16 70/100	Older reinforcement layers	2000	2650	0.25
			 Unbound granular materials (ABb16 50/70	 Protective storage 	1900	2650	0.28
			Select material	ABb16 70/100	Unbound base course gravel road	1800	2650	0.32
			Select material	AG16 160/220 AG16 70/100	Gravel wear warehouse	1700	2650	0.36
			Add layer over	AG22 160/220	Subsoil and subsoil materials			
				AG22 70/100	Solid rock	2630	2650	0.01
			O Sol	AG32 70/100 Agb 11-160/220	Blasted stone and crushed blasted stone	1600	2650	0.40
			Select material	Agb 11-330/430	Coarse-grained soil	1800	2650	0.32
			Obiota materia	Agb 16-160/220	Mixed-grained soil with a fine soil content of less than 30%	1900	2650	0.28
				Agb 16-330/430 Ab 11-70/100	Mixed-grained soll with a fine soll content greater than 30%	1700	2650	0.36
				Ab 11-PMB	Clay	1600	2650	0.40
				Ab 16-70/100 Ab 16-PMB	Silt	1700	2700	0.37
				Ska 11-70/100	Older coarse fraction	1900	2700	0.30

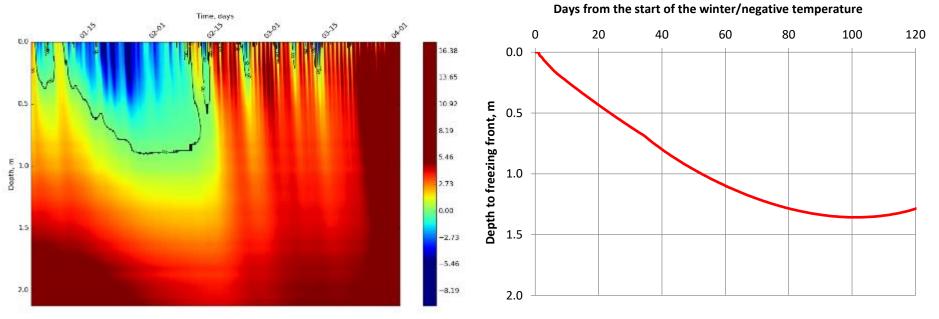

VALIDATION OF THE FROST HEAVE MODEL

4 test pavement sections constructed in Quebec in 1998 are analyzed



VALIDATION RESULTS


ULLEVILEDEN - LINKÖPING


Ullevileden

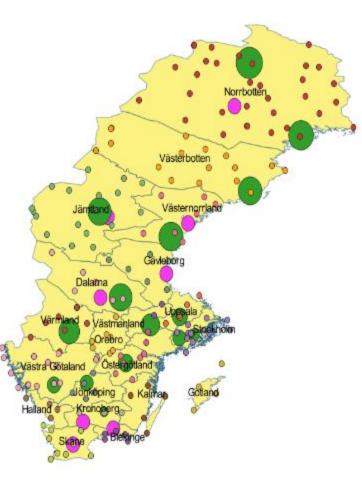
Thickness, mm

ULLEVILEDEN - LINKÖPING

ULLEVILEDEN - LINKÖPING

DESIGN CRITERIA – FROST HEAVE

Reference	Climate zone	Permitted maximum
speed (km/h)		heave (mm)
120	1 - 5	10
110	1 - 2	20
110	3 - 5	50
100	1 - 5	50
80	1 - 5	80
≤ 60	1 - 5	120


1401	Climate zone	Commutative Freezing Index [°C·days]
5	1	0–300
	2	301–600
8.1	3	601–900
	4	901–1200
	5	1201 and above

5

vti

ONGOING WORK

- Update the material database
 - Soils and granular materials
- Database of weather stations/data
- Improve user interface
- Calibration and validation of the component models
 - LTPP
 - Test roads

Thank you for your attention!