SøK 1101 Environmental and Resource Economics

Term Paper 2022, Due $8^{\text {th }}$ April 12 Noon

The exercise can be done individually or in groups of up to 4 persons.
All questions should be answered.
The term paper must be submitted as a single pdf file via Blackboard (handwritten answers can be scanned to pdf).

See guidelines for submission on Blackboard.

Question 1 Markets and Externalities

a. Consider a two-firm model (e.g. fishery and steel firm) with negative production externalities (i.e pollution). Demonstrate how externalities leads to reduced social welfare.
(a) A diagramme showing a demand curve and a marginal private cost and a marginal social cost curve (where the MSC curve is higher) - ideally should explain what the source of the difference is (i.e. pollution)
(b) Demonstrate how this leads to a lower price and higher quantity of production than at the social optimal (i.e. P^{*} private $<P^{*}$ Social)
(c) And really ideally show (using areas under the supply and demand curves etc) how total surplus (welfare) is lower. See below slide:

D is the deadweight loss associated with overproduction - it is the net loss of overall surplus due to (socially) inefficient production

What happens if we go to socially optimal production (Q^{\prime}) then net social benefits are A. By definition $\mathbf{A}>(\mathbf{A}-\mathbf{D})$ and here you can see the sense in which D is a net loss relative to social optimal
b. Show how negotiation can achieve the socially optimal (i.e. static efficient) level of production and pollution. Show this for the case of (i) a right to pollute and (ii) right to clean water.

Show the Coase Theorem outcome from two perspectives. Could first discuss how the problem arises from a lack of property rights over the water.
(1) Right to pollute

Efficient Output w/ negotiation (fig 2.10)

Efficient Output w/ negotiation (fig 2.10)

Market for steel

B is the cost to fishery (pollution damages) of Q^{*} steel production

E is cost of production to Q^{*} to steel firm
$A+B$ is the producer surplus
So steel firm would be willing to pay At least B

But $A+B$ would make them indifferent between 0 and Q^{*} production

Question 2 Intertemporal Allocations

Consider a 2-period model with a finite non-renewable resource. There are 18 units available. The demand function for both periods is $\mathrm{P}=10-0.25 \mathrm{Q}$. The marginal cost of extraction is $\$ 2$. Use a discount rate of 6% and demonstrate (diagrammatically and numerically) the optimal allocation across both periods (quantities).

Calculate prices in and marginal user costs in both periods.

First things first - I set up a slightly strange example. As many pointed out there would be shortages of supply even in a one period model.

First display this in a 2 period 'box diagramme'. I.e. (a) the x-axis goes from 0 to 18 left to right, and 0 to 18 (on the line below) right to left. (I have endeavoured to draw this below)

Then create MNB i.e. 10-0.25Q-MC = 8-0.25Q (MNB1). And the discounted version of this for (by 6\%) for period 2 (MNB2).

Plot both of these, show intersection, key point is that they intersect such that slightly more than 9 is allocated to period 1 and (naturally) less than 9 to period 2.

Then solve for quantities and prices.
For example we know that MNB1=MNB2 at equilibrium and that $Q 1+Q 2=18$

Hence
$8-0.25 Q 1=7.55-0.235 Q 2$ (approx.)

Set Q1=18-Q2

Substitute
$8-0.25(18-Q 2)=7.55-0.235 Q 2$
$8-4.5+0.25 Q 2=7.55-0.235 Q 2$
$3.5+0.25 Q 2=7.55-0.235 Q 2$
$4.05=0.485 Q 2$

Q2 $=8.35$

Q1 $=9.65$

Substitute quantities into original demand functions (not the the MNB functions - common error) to generate prices.

