Exam SØK3524 Spring 2022

Question 1 (60%)

Two firms, 1 and 2, are polluting a lake. The Environmental Protection Agency (EPA) has decided to cap the emissions to \overline{M} per unit of time. Without abatement (business as usual) the emission will be \hat{M}_i (i = 1, 2). Due to different technology the abatement cost of the two firms is different. The cost functions are given as $C_i = a_i(\hat{M}_i - M_i) + b_i(\hat{M}_i - M_i)^2$ where $(\hat{M}_i - M_i)$ is the amount of abatement.

a) Formulate the EPA's planning problem when the goal is to minimise total abatement cost.

b) Find the social optimal emission of the two firms and demonstrate the conditions for $M_i \ge 0$.

c) Demonstrate how both a tax on emission and a cap-and-trade regime can generate the socially optimal solution.

d) Consider the situation when the EPA cannot observe the emission from each of the firms. The concentration of pollution in the lake can, however, be observed and is given by $E = d_1M_1 + d_2M_2$ where d_i are the "transportation" coefficients. The damage function reads $D = \alpha E$. Find the social planner solution of pollution E^* , emission and abatement of the two firms when the goal is to minimize total cost. The firms are facing the following tax scheme $T_i = t(E - E^*)$. Propose a tax rate t.

e) Analyze the problem in d) under the assumption of the increasing marginal damage function $D = \alpha E + \frac{\beta}{2}E^2$.

f) Discuss taxes and quota regulation in light of dynamic efficiency and information uncertainty.

Question 2 (40%)

Consider a fishery where the utility of fishing only depends on the harvest volume. h_t is the harvest at time t and $U(h_t)$ is the utility, where $U'(h_t) > 0$ and $U''(h_t) < 0$. The stock's dynamics is governed by $\dot{X}_t = F(X_t) - h_t$, where $F(X_t) = rX_t(1 - \frac{X_t}{K})$ is the natural growth of the stock.

a) Formulate the problem and find the conditions for optimality when the aim is to maximise the utility of the fishery from today until $T = \infty$.

b) Use phase diagrams to analyse the dynamics of the fishery.