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1 Exercise 1 (40 points)

Standard economic theory predicts that the demand for children is inuenced by the cost of raising children.

Holding other things constant, a decrease in the cost of raising children should lead to an increase in the

demand for children. Whittington, Alm, and Peters (1990) provide evidence for this relationship, exploiting the

fact that between 1913 and 1984 the value of child tax bene�ts in the U.S. increased substantially relative to

estimates of the cost of raising children. Whittington, Alm, and Peters (1990) claim a large positive e�ect of

child tax bene�ts on fertility using time series methods. Their key conclusion is based on the following equation,

estimated for the period 1913 to 1984:

Fertility Ratet =�0 + �1Personal Exemptiont + �2Male and Asset Incomet+ (1)

+ �3Unemploymentt + �4Infant Mortalityt + �5Immigrationt+

+ �6Female Waget + �6Pillt + �8WW2t + �9Time Trendt + ut:

Here Fertility Ratet measures the number of children born per 1,000 women; Personal Exemptiont is the

dollar value of the personal tax exemption, that is, the dollar amount that a resident taxpayer is entitled to

claim as a tax deduction in the presence of dependent children; Male and Asset Incomet is the dollar value

of personal income per family, net of female earnings; Unemploymentt measures the share of people who are

unemployed; Infant Mortalityt measures the number of children who die per 1,000 live births; Immigrationt

measures the share of people who are foreign born; Female Waget is the dollar value of after-tax female wage;

Pillt is a dummy variable that equals one in years 1963-1984, when birth control became widely available; WW2t

is a dummy variable that equals one in years during which the US was in World War II and Time Trendt is a

time trend equal to one in 1913 and increasing by one unit each year.

In this exercise you are asked to revisit this question, discussing and interpreting the �ndings in Whittington,

Alm, and Peters (1990) and the critique provided in Goda and Mumford (2010). All relevant results are reported

in Table 1, on page 7.

(a) Interpret the regression results reported in column (1).

10 possible points. A large number of students misinterpreted the ratio variables. A number of them

performed t-tests that however were not required. The following penalties were applied:

� Ratios misinterpreted/some vagueness (no unit of measure or imprecise at places): 8

points

� Ratios wrong plus other misinterpretation (eg % in the wrong places, not using the unit

f measurement): 5 points

� Vague answer, but an answer present: 2 points
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Solution. This question tests some basic ability to interpret regression results. Variables

of various types are included in the model (dummies, rates, shares...). It is important that

students highlight the ceteris paribus interpretation. All other things being equal, the following

holds: a ten dollar increase in personal exemption is expected to increase the number of children born

per 1,000 women by almost two children (1.78). A 1,000 dollars increase in family income and assets is

expected to increase fertility by more than 3 children (3.5); a 1% increase in the unemployment rate is

expected to decrease fertility by 0.68 (so roughly a 2% increase reduces the n. of children born by 1);

roughly about every 3 children who die we expect the n. of children born to increase by slightly more

than one (1.17); a one percent increase in the foreign born is expected to increase fertility by more than

9 extra children; a one extra dollar of hourly wage is expected to increase the n. of children born by 15;

the availability of birth controls has reduced the n. of children born by 25 children per 1,000 women;

during the War, the n. of children born was smaller by 29 births per 1,000 women; �nally, we experienced

throughout the century a downward trend in ferility: almost a reduction of one child for each year between

1913 and 1984. As usual the intercept has little meaning: it would capture the average fertility when all

the regressors are zero.

(b) Column (1) reports results of a simpli�ed version of column (2). Explain the restrictions that are imposed

in column (1) compared to column (2). Explain the consequences on the model in column (1) if these

restrictions are violated. Finally, explain how you could test these restrictions.

4 possible points. Most students did not understand this question. A large number simply listed

assumptions of the OLS estimator, without realizing the one that was key here. If serial correlation was

mentioned, full credit was given. The following penalties were applied:

� Vague answers: 2 points

Solution. This question tests students' knowledge of di�erent estimators (knowing what

OLS vs FGLS is) but especially asks to discuss issues of serial correlation. It is important

that the students realize that, if other assumptions hold, the OLS will still be unbiased

but ine�cient. There must be a discusion of the e�ect on the variance of the presence

of serial correlation and understanding of how to test for it. The estimation in column (2)

employs a Feasible Generalized Least Squares estimator. This is motivated by a stated concern about

serial correlation in the error term ut in equation (1).

Consider the baseline model of equation (1). Now suppose that:

ut = �ut�1 + et with et iid

The model in column (1) imposes � = 0. Under this condition and the additional assumption TS1-TS6

(should be explained), the OLS estimator would be unbiased and consistent.

In the presence of serial correlation (i.e. � 6= 0), the OLS is no longer BLUE, the OLS standard errors

and test statistic are not valid even asymptotically. The students could show that the variance of the OLS

estimator would take the form (chapter 12.1b):

V ar(�̂1) =
�2

SSTx
+ 2

�2

SST 2
x

n�1X
t=1

n�tX
j=1

�jxtxt+j :

The second term would not be accounted for. A large � and positive correlation over time of the regressors

can cause the bias of the OLS variance estimator to be large.
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It is always advisable to test for serial correlation (chapter 12.2a) - note, we have not discussed in class

the Durbin Watson test, so a discussion of that test is not expected.

A test for serial correlation assumes that E(etjut�1; ut�2; : : :) = 0 and V (etjut�1) = �2e . The hypothesis

are:

H0 : � = 0

H1 : � 6= 0

Under the null hypothesis futg are weakly dependent so we could use a standard t-test. However, the

error term is unobserved. Hence, in a �rst step we ned to estimate the main model and obtain residuals,

then we can regress the residuals on their one-period lag. The t-statistic takes then the usual form.

Finding serial correlation motivates the use of the FGLS.

(c) Compare and contrast the estimators used in column (1) and column (2).

4 possible points. Most students did not understand this question. A large number simply compared

the estimates rather than the estimators. That cannot be accepted. Partial credit was given to those that

discussed heteroskedasticity, although the question SPECIFICALLY excluded this answer. The following

penalties were applied:

� Discusses FGLS in the context of heteroskedasticity: 3 points

� Vague answer that compares estimates: 1 point

Solution. This test understanding of di�erent estimators. The FGLS does not assumes serial

uncorrelation and it is based estimating by ordinary least squares a modi�ed model of the type:

(Fertility Ratet � �̂Fertility Ratet�1) on (Personal Exemptiont � �̂Personal Exemptiont�1) and so on for

all regressors (one would also need to correct the estimation to include the �rst period). The OLS applied

to this quasi-di�erentiated data will deliver t-stat and F-stat that are asymptotically valid. Note that

FGLS will only be asymptotically valid and in small samples will be biased. Big di�erences between OLS

and FGLS should be taken with suspicion. Full derivations are not expected but these issues have been

discussed in class and have also been discussed in the Discussion Board on Blackboard.

(d) For Whittington et al. (1990) also estimate a model in which they include a new variable, which they call

Triangular Personal Exemption, constructed in the following way:

Triangular Personal Exemptiont =
1

3

�
Personal Exemptiont + Personal Exemptiont�1+

+ Personal Exemptiont�2

�

Does this variable capture the long run impact of personal exemptions on fertility? Why could it be of

interest to include Triangular Personal Exemptiont in the model?

2 possible points. Most students did not understand this question. Little weight was given to it. As

long as there was some discussion of how lags can measure long term e�ects full credit was given. The

following penalties were applied:

� No answer: 0 points

� Some discussion of how lags measure long term propensity: 2 points
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Solution. This question tests the understanding of LRP and, somewhat more challenging,

hints to issues of seasonality. Model (1) and (2) do not take into account that, due to biological

constraints, the birth of a child will lag the decision to have a child. Rather, model (1) and (2) assume

an immediate e�ect of tax credits on fertility. It seems natural to include lags in the baseline model:

Fertility Ratet =�0 + �1Personal Exemptiont + �2Personal Exemptiont�1+

+ �3Personal Exemptiont�2 + : : :+ ut

In such model the long-run propensity can be found by assuming a steady state so that:

Personal Exemptiont = Personal Exemptiont�1 = Personal Exemption:

Hence, LRP = �1 + �2 + �3. In the estimated model we rather have that:

Fertility Ratet =�0 + �Triangular Personal Exemptiont + : : :+ ut

The two things are not equivalent. With the triangular structure we are averaging three consecutive

values of the time series and, in order to avoid a shift in the level, divided by 3. This eliminates \seasonal

variation", in this case primarily stemming from biological constraints.

(e) Zhang et al. (1994) mention that there is a concern that some series in the Whittington et al. (1990)'s

study may be non-stationary. However, Zhang et al. dismiss these criticisms claiming that because \the

time trend is insigni�cant" in their estimation, there is no concern that the results are being driven by a

regression of \time against time". Using results in column (3), show that the time trend is insigni�cant

and then discuss whether you agree or disagree with this statement. Discuss this issue also comparing

results with those presented in column (4).

8 possible points. Most students did not discuss stationarity and all tested the signi�cance of the time

trend. The following penalties were applied:

� Only trend tested: 4 points

� Trend tested and some attempt to discuss properties of series/models (e.g. understand-

ing of �rst-di�erence models, but no mention of unit root): 6 point

Solution. This question tests a core concept: unit roots. Students should highlight the

di�erence between trends and unit roots. We can test whether the time trend is insigni�cant by

checking:

H0 : �9 = 0

H1 : �9 6= 0

A standard t-test requires:

tstat =
�̂9 � 0

se(�̂9)
=

�0:377

4:71
= 0:08

Under H0 the t-statistic is distributed as a T with n� k � 1 = 68� 9� 1 = 58 degrees of freedom. The

critical values are (roughly) 1.67 at 10%, 2 at 5% and 2.66 at 1% signi�cance levels. The t-statistic is

below any of these values so we fail to reject the null hypothesis and conclude that we do not have enough

evidence that suggest the presence of a time trend in fertility rates.
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However, an insigni�cant time trend coe�cient estimate does not alleviate concerns that some of the series

are I(1). It is extremely important not to confuse trending and highly persistent behaviors. A series can

be trending but not highly persistent and can be highly persistent and trending. In addition, if the series

are I(1) testing on a time trend would be invalid. In fact, suppose that:

Fertility Ratet =�0 + �1Personal Exemptiont + : : :+ Fertility Ratet�1 + ut

For the sake of the argument, let's disregard all the observable characteristics.

E(Fertility Ratet) = E(Fertility Rate1913)

V (Fertility Ratet) = t�2u

The variance of a random walk increases as a linear function of time. This process cannot be stationary

and violates the key assumptions of the CLM.

Granger and Newbold (1974) in their seminal paper on spurious regressions argue that annual macro

series, like those used in this study, are almost always I(1); thus, regressions involving the levels will be

misleading, suggesting relationships when there may be none.

A unit root test, rather than a test on the trend, seems necessary. This was carried out in class. There

is not enough information in the table to carry it out, but the fact that the estimates in �rst di�erences

show a statistically insigni�cant e�ect on fertility (a big change compared to before!) hints to the �rst

few models being poorly speci�ed.

(f) Goda and Mumford (2010) examine additional features of the tax code that provide tax subsidies to

families with children. Rather than focusing only on the personal tax exemption, they construct a new

variable, total child tax subsidy, that is the sum of personal exemption and additional child tax bene�ts,

namely child tax bene�ts from the earned income tax credit, the child and dependent care tax credit, and

the child tax credit Their results are reported in column (5) of Table 1. Discuss possible reasons that

explain why results di�er between column (4) and (5).

8 possible points. Only one student related to measurement error. Most students brought up issues of

correlation across variables (multicollinearity at times). This was accepted as an answer, if well argued.

The following penalties were applied:

� Discusses correlation across variables: 7 points

� Vague answer: 3 points

Solution. This question is about measurement error. We have not discussed it in the time

series context, but students could list the strong TS.1-TS.6 assumptions and reproduce what

learned for cross-sectional data. Good understanding would further discuss that attenuaton

bias will occur in an otherwise well-speci�ed model. The dynamics in column (5) are still

not well-speci�ed The models in column (1)-(4) might su�er of measurement error in Personal Ex-

emption. While measurement error in the dependent variable does not have many consequences, that of

the independent variable results in biased estimates of the e�ects of interest. The students should show

this (done in class, in the textbook and in the tutorial).

(g) Conclude this exercise by summarizing the results in Table 1 and drawing conclusions on the relationship

between tax incentives and fertility. In writing your conclusions, pay particular attention to discussing

the statistical and economic signi�cance of the relationship between child bene�ts and tax bene�ts across
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models. What is your preferred model among those presented? Could one further improve on your

preferred model?

4 possible points. Most students picked model 3 as their favorite, missing the issue of unit roots. Some

partial credit given to vague answers. The following penalties were applied:

� Picks model 3: 2 points

� Vague answer: 1 point

Solution. This question makes sure that students have understood the logic of the question

and of the steps of an empirical analysis. In the exercise we have �rst shown that the main result

from column (1), namely the strong results reported in Whittington et al. (1990), are not robust to

�rst-di�erencing. Column (1) showed that $100 in tax bene�ts (in 1967 dollars) are associated with an

increase in the general fertility rate of 11.6. Moving from Column (3) to Column (4) illustrates the e�ect

of �rst-di�erencing the series that contain a unit root. The coe�cient on the tax subsidy ips sign and

decreases in magnitude. Column (5) repeats the analysis including other child tax bene�ts in the tax

subsidy series. While the coe�cient on the total child tax subsidy variable are of the same signs as in

Columns (4), it is no longer signi�cant and smaller in magnitude. Because of the increasing importance

of tax subsidies for children other than the personal exemption and their more salient nature, the changes

in the key coe�cients that result from adding in these other tax bene�ts cast additional doubt regarding

the true e�ect of tax subsidies on fertility. Overall, Table 1 shows that Whittington et al.'s result is

sensitive to correcting for unit roots by �rst-di�erencing and adding the tax subsidies for children in other

parts of the tax code. The model in column (5) still disregards any dynamic e�ect of tax exemption on

fertility. This is a limitation of this analysis and one could include further lags of the key explanatory (or

dependent!) variable and eventually test whether such model outpeforms the static one.
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Table 1: Child Tax Bene�ts and Fertility

OLS FGLS FGLS First Di�erence First Di�erence

(1) (2) (3) (4) (5)

Personal Exemption 0.178 0.121 - -0.084 -

(0.0977) (0.0446) - (0.042) -

Triangula Personal - - 0.191 - -

Exemption - - (0.0477) - -

Total Child Tax Subsidy - - - - -0.007

- - - - (0.006)

Male and Asset Income 0.0035 -0.0004 -0.0004 -0.003 -0.001

(0.0031) (0.0027) (0.0027) (0.002) (0.000)

Unemployment -68.12 -73.43 -36.800 -20.985 -8.957

(25.818) (34.20) (39.60) (31.280) (27.301)

Infant Mortality 0.393 0.083 0.303 -0.042 -0.054

(0.321) (0.255) (0.3817) (0.315) (0.274)

Immigration 964.13 774.24 1529.2 68.878 194.315

(329.44) (311.31) (480.44) (119.073) (138.742)

Female Wage 15.427 5.647 -2.157 7.472 1.924

(5.286) (15.686) (14.098) (5.792) (1.196)

Pill -25.383 -10.856 -8.958 -1.91 -0.44

(11.961) (6.126) (5.522) (1.020) (0.841)

WW II -29.419 -17.223 -5.353 5.138 3.468

(8.057) (4.989) (3.947) (3.377) (2.572)

Time Trend -0.843 -0.539 -0.377

(0.543) (0.538) (4.71)

Intercept 55.944 102.979 81.628 -0.618 -1.174

(25.831) (24.666) (32.251) (0.954) (0.943)

N 72 71 68 71 71

R
2 0.829 0.916 0.941 0.203 0.103

In all columns, the dependent variable is the fertility rate at time t, which measures the number
of children born per 1,000 women Personal Exemption is the dollar value of the personal tax
exemption, that is the dollar amount that a resident taxpayer is entitled to claim as a tax
deduction if one has dependent children; Triangular Personal Exemption is de�ned in the text;
Male and Asset Income is the dollar value of personal income per family net of female earnings;
Unemployment measures the share of people who are unemployed; Infant Mortality measures
the number of children who die per 1,000 live births; Immigration measures the share of people
who are foreign born; Female Wage is the dollar value of after tax female wage; Pill is a dummy
variable that equals one in years 1963-1984; WW2 is a dummy variable that equals one in years
during which the US was in World War II and Time Trend is a time trend equal to one in 1913
and increasing by one unit each year.
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2 Exercise 2 (40 points)

Classical criminology assumes that criminals are rational beings who weigh the costs and bene�ts of their

actions. Gary Becker (1968) produced the �rst fully edged theory of crime based on rational behavior. His

research led to an upsurge of interest in the economics of criminal behavior. One of the central predictions of

Becker's theory is that crime will decrease when police presence increases. A basic problem with this prediction

is that it largely failed to �nd empirical support during the 1970s and 1980s. In a survey of the literature,

Samuel Cameron (1988) reports that in 18 out of 22 papers surveyed researchers found either a positive e�ect

of police presence on crime or no relationship between these variables.

Most of these studies estimated models in which the number of violent crimes in city c at time t were

regressed on the number of policemen per capita in city c at time t.

In this exercise you are asked to revisit this question, discussing and interpreting the �ndings in Levitt

(1997). The sample includes 122 cities observed between 1975 and 1995. Levitt revisits previous evidence and

estimates several versions of the following model:

logViolent Crimect =�0 + �1 log Police per Capitact + �2 log(State prisoners per capita)ct+ (2)

+ �3Unemployment ratect + �4State income per capitact+

+ �5E�ective abortion ratect + �6 log(City population)ct+

+ �7Percentage blackct + uct:

Here logViolent Crimect is the log of per capita city crime at time t, log Police per Capitact and log(State prisoners per capita)ct

are the log of police per capita and of the number of prisoners in the State in city c at time t, respectively;

Unemployment ratect measures the shares of unemployed in the population in city c at time t; State income per capitact

measures State income per capita in 10,000 dollars; the e�ective abortion rate (in 100) is the weighted average

of the abortion rate of crime-aged individuals; log(City population)ct is the log of the population in city c at

time t and Percentage blackct is the percentage of African American individuas in city c at time t. All relevant

results are reported in Table 2, on page 11.

(a) Consider �rst the model in column (1) of Table 2. Discuss under which conditions this model might pin

down the causal impact of police on crime and discuss whether these conditions are likely to hold in this

context.

20 possible points. Most students presented a broad discussion of OLS assumptions, sometimes in the

time series context rather than in the pooled cross-section one. Very few students were able to relate the

identi�cation conditions to the exact problem under study. The following penalties were applied:

� Broad discussion: 5 points

� Broad discussion + 5 points each for mentioning simultaneity, OVB, measurement error

Solution. This question tests the understanding of OLS assumptions and whether students

can critically evaluate an empirical problem. Column (1) employs the OLS estimator on the

following model:

log Violent Crimect =�0 + �1 log Police per Capitact + �2 log(State prisoners per capita)ct+

+ �3Unemployment ratect + �4State income per capitact+

+ �5E�ective abortion ratect + �6 log(City population)ct+

+ �7Percentage blackct + uct

8



Indicate with Xct the set of regressors in the previous equation. The key assumption for causal identi�-

cation of the impact of police on crime is E(uctjXct) = 0. A violation of this condition would result in a

biased �̂1. In fact, the second term of this summation would not be zero:

E(�̂1) = �1 +
Cov(log Police per Capitact; u)

V ar(log Police per Capitact)

The fact that the OLS estimator delivers a positive relationship rather than a negative one, seems to

suggest that:

Cov(log Police per Capitact; u)

V ar(log Police per Capitact)
> 0

Possible reasons for this to happen are:

� Simultaneity bias: if more police is hired when crime increases, a positive correlation between crime

and police can emerge even if police reduces crime.

� The presence of unobserved heterogeneity across cities will impart an upward bias on cross-sectional

estimates of police e�ectiveness. Cities that have a high level of underlying criminality are likely

to have both high crime rates and large police forces. Detroit has twice as many police per capita

than Omaha, and violent crime over four times as high, but it would be a mistake to attribute the

di�erences in crime rates to the presence of the police.

� A �nal source of bias is that as police increases reporting rates might also increase if police workload

(i.e. more police) is reduced.

� Finally, measurement error per se should not be a problem as it would bias towards zero the results

but not make the estimated e�ects positive.

(b) Test whether permanent di�erences in crime rates across cities are important in explaining violent crimes.

Explain whether a model that includes such di�erences is su�cient to identify the causal e�ect of police

on crime.

10 possible points. Some students did not perform the test. Full credit was given even if the degrees

of freedom were incorrect. The following penalties were applied:

� No test and some vague discussion: 5 points

Solution. This question requires students to understand the role of �xed e�ects and tests

basic knowledge of an F-test. The model in column (2) applies the OLS to the following equation:

logViolent Crimect =�0 + �1 log Police per Capitact + �2 log(State prisoners per capita)ct+

+ �3Unemployment ratect + �4State income per capitact+

+ �5E�ective abortion ratect + �6 log(City population)ct+

+ �7Percentage blackct + �1city1 + �2city2 + : : :+ �121city121 + uct

Here city1� city121 are indicators that take value of one in city c and zero otherwise. These variables are

able to capture permanent di�erence in crime rates across cities. This model therefore tackle the second

challenge to exogeneity listed in the previous section.

To test whether permanent di�erences in crime rates across cities are important in explaining violent

crimes, we perform a joint signi�cance test on these variables.
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H0 : �1 = �2 = : : : = �121 = 0

H1 : not H0

The test statistic is:

F � stat =
R2

u �R2
r

(1�R2
u)

�
n� k � 1

q
=

0:93� 0:601

1� 0:93
�

2005� (121 + 7)� 1

121
= 72:86

Under the null hypothesis, the F-statistic is distributed as an F121;1876. The critical values are: at 10%

signi�cance level the critical value is 2.30, at 5% is 3 and at 1% is 4.61. The F-statistic is well above all

these critical values so we reject the null hypothesis and city heterogeneity enters the model.

Such model would solve for the presence of unobserved heterogeneity and capture all time-invariant omitted

variables. Nonetheless it would still not account for the potential simultaneity bias, or capture all those

time-varying factor that are correlated with both police and crime and not captured by the other variables.

(c) De�ne the problem of weak instruments and discuss whether you think that the model exhibits a weak

instrument problem.

10 possible points. Most students had a discussion of weak instruments, not all performed the test.

Most mentioned the rule of thumb. The following penalties were applied:

� No test and some vague discussion: 5 points

� Discussion + test (on the correct coe�cient): 8 points

� Discussion + test (on the correct coe�cient+ rule of thumb): 10 points

Solution. This question requires students to discuss potential problems with IV strategies.

We saw in class that

plim�̂IV
1 = �1 +

Corr(Firefighters; u)

Corr(Firefighters; Police)

�u

�police

This equation highlights that if Corr(Firefighters; Police) is small, even in case of a close to zero

Corr(Firefighters; u), we could have a large bias in the IV. In this case, comparing column (2) with

column (3) we �nd that the IV is 6 times bigger than the OLS. A 10% increase in police per capita is

expected to decrease violent crimes by almost 5% (other things being equal). The OLS estimator suggested

that a 10% increase in police would have lowered violent crimes by a mere 0.7%. These seem substantial

di�erences. However, the instrument will pass the rule of thumb of being greater than 3.2. The test is

performed on the �rst-stage regression:

log Police per Capitact =�0 + �1 log Fire�ghters per Capitact+

+ �2 log(State prisoners per capita)ct ++�3Unemployment ratect+

+ �4State income per capitact+

+ �5E�ective abortion ratect + �6 log(City population)ct+

+ �7Percentage blackct + �1city1 + �2city2 + : : :+ �121city121 + uct

Here we test:

H0 : �1 = 0

H1 : �1 6= 0
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This is a standard t-test which requires:

tstat =
�̂1 � 0

se(�̂1)
=

0:206

0:050
= 4:12

Under H0 the t-statistic is distributed as a T with n� k� 1 = 2005� 121� 1 = 1883 degrees of freedom.

The critical values are (roughly) 1.64 at 10%, 1.96 at 5% and 2.57 at 1% signi�cance levels. The t-

statistic is above all critical values and above the rule of thumb, so we reject the null hypothesis and

conclude that the presence of �re�ghters is a good predictor for the number of policemen in a city. Of

course, it could still be that our instrument is relevant but invalid, i.e. violates the identifying assumption

Corr(Firefighters; u) = 0. This is untestable with only one instrument, but a student could think of

reasons why this condition might be violated in the model above.

Table 2: The Impact of Police on Crime

OLS OLS OLS IV

log(Violent Crime) log(Violent Crime) log(Police per capita) log(Violent Crime)

(1) (2) (4) (3)

log(Fire�ghters per capita) - - 0.206 -

- - (0.050) -

log(Police per capita) 0.562 -0.076 - -0.435

(0.056) (0.061) - (0.231)

log(State prisoners per capita) 0.25 -0.131 -0.077 -0.171

(0.039) (0.036) (0.022) (0.044)

Unemployment rate 3.573 -0.741 0.265 -0.48

(0.473) (0.365) (0.314) (0.404)

State income per capita 0.05 -0.003 0.211 0.003

(x10,000) (0.005) (0.006) (0.005) (0.007)

E�ective abortion rate -0.214 -0.15 0.045 -0.141

(x100) (0.045) (0.023) (0.026) (0.025)

log(City population) 0.072 0.203 -0.014 0.178

(0.012) (0.063) (0.047) (0.067)

Percentage black 0.627 0.233 0.493 0.398

(0.074) (0.334) (0.264) (0.345)

City dummies and year dummies? Only year yes yes yes

R
2 0.601 0.93 0.962 -

N 2005 2005 2005 2005

The dependent variables are reported in the �rst row on top of each column, with logViolent Crimect being the log
of per capita city crime at time t and log Police per Capita

ct
being the log of police per capita in city c at time t.

log(Fire�ghters per capita) is the log of the number of �re�ghters per capita; log(State prisoners per capita)ct is the number
of prisoners in the State in city c at time t, respectively; Unemployment rate

ct
measures the shares of unemployed in the

population in city c at time t; State income per capita
ct

measures State income per capita in 10,000 dollars; the e�ective
abortion rate (in 100) is the weighted average of the abortion rate of crime-aged individuals; log(City population)ct is the
log of the population in city c at time t and Percentage black

ct
is the percentage of African American individuas in city c

at time t.
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3 Exercise 3 (20 points)

Throughout the course we have analyzed linear models of the form:

y = �0 + �1x1 + �2x2 + : : :+ �kxk + u:

Albeit linear relationships are very powerful, not all economic models are linear.

Hence, consider now a non-linear speci�cation in which y is a generic, known, non-linear function f(�) of

characteristics and parameters:

y = f(x1; : : : ; xk;�0; �1; : : : ; �k) + u:

Data are assumed to be i.i.d, E(ujx1; : : : ; xk) = 0 and V (ujx1; : : : ; xk) = �2.

(a) De�ne a method that you could use to estimate the vector of parameters �1; : : : ; �k. Note: you do not

have do derive these parameters, only to describe a method for doing it.

10 possible points. Some students thought of using MLE and referred to Probit/Logit models. This

was accepted. Other students The following penalties were applied:

� Minimizing SSR/MLE: 10 points

� Vague discussion on some estimator: 5 points

Solution. This question requires students to understand the basics of the least squares

estimation and apply it to a new context. Analogous to the OLS which minimizes:

min
�1;:::;�k

Q(�1; : : : ; �k) = min
�1;:::;�k

nX
i=1

�
yi � �0 + �1x1 + �2x2 + : : :+ �kxk

�2

One could think of estimating the parameters using an analogous least-squares estimation:

min
�1;:::;�k

Q(�1; : : : ; �k) = min
�1;:::;�k

nX
i=1

�
yi � f(x1; : : : ; xk;�0; �1; : : : ; �k)

�2

The �rst order condition with respect to �1 for example would take the form:

@Q(�1; : : : ; �k)

@�1
=

nX
i=1

@f(x1; : : : ; xk;�0; �1; : : : ; �k)

@�1

�
yi � f(x1; : : : ; xk;�0; �1; : : : ; �k)

�
= 0

It is easy to see that the linear model is a special case of this more generic situation, as the relative �rst

order condition was:

@Q(�1; : : : ; �k)

@�1
=

nX
i=1

xi

�
yi � f(x1; : : : ; xk;�0; �1; : : : ; �k)

�
= 0

(b) Let �̂0; : : : ; �̂k indicate the estimator resulting from part (a). Describe which statistical properties you

would like this estimator to exhibit. [Note: again, you are not required to make derivations]

5 possible points. Most students confused assumptions with statistical properties. The following

penalties were applied:

� Vague answers: 2
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Solutions. This question is a test of basic knowledge. As we have studied throughout the course,

unbiasedness and large sample consistency are two properties that econometricians consider desirable.

Unbiasedness requires:

E(�̂j) = �j j = 1; : : : ; k

This properties requires the estimator to be centered around the true parameter. In other words, while

each single realization might di�er from the true �j in the population, on average an unbiased �̂j would

deliver the true population parameter.

Consistency requires:

plim �̂j ! �j

That is, in large sample, the probability limit of �̂j is �j .

(c) Explain how you would check empirically that the estimator you have proposed at point (a) satis�es the

properties that you have discussed at point (b).

5 possible points. Most students discussed testing of the assumptions with statistical properties. The

following penalties were applied:

� Vague answers: 2

Solution. This question links to the Monte Carlo studies that we have used in class to study

the properties of the OLS estimator. It is a \reward" to those students who have fully

studied the course material and understood the wide application of the concepts covered.

One way to show the behavior of an estimator is to perform Monte Carlo simulations. We have used this

tool several times during the course, e.g. to discuss unbiasedness of the OLS under the CLM assumptions

and when those assumptions were violated. Similarly here, one could use Monte Carlo simulations to

study the behavior in small and large samples of �̂j .

Monte Carlo simulation is a method of analysis based on arti�cially recreating a random process with a

computer, performing the estimation, observing the results and running the whole procedure many times.

One could generate the data for x1, x2; : : : ; xk and u as normal random variables. One could then set

values for the parameters �0; : : : ; �k and derive then y. One could then apply the estimator proposed at

(a), collecting the results. By repeating this procedure r times and looking at the average of the results

one could check unbiasedness.

Consistency could be studied by looking at the large sample behavior of the estimator, i.e. increasing the

sample size. One could also use a data generating process which violates some of the assumptions made

and study the asymptotic behavior of the estimator.
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