Exercise 1 (40 points)

In their paper "A nation of immigrants: Assimilation and economic outcomes in the age of mass migration" published in the Journal of Political Economy in 2014, Abramitzky, Boustan, and Eriksson study the assimilation of European immigrants in the United States labor market during 1850-1913. In this period almost thirty million, mostly European, immigrants moved to the US. The common view among scholars has been that European immigrants held substantially lower-paid occupations than natives upon first arrival, but that they converged with the native born after spending some time in the US. The paper provides new light to this issue.

The authors construct two datasets. They start by obtaining three random samples of migrants and natives from the United States census of the population, one for year 1900, one for the year 1910 and finally one for the year 1920. For the second dataset, they build a panel dataset in the following way. They start from the random sample of natives and migrants they have for 1900 and then they search these individuals by their name, surname and age in the 1910 Census and, again, in the 1920 Census. In doing this exercise, their matching rate is about 25%. In other words the authors are able to follow 25% of the original 1900 sample over time.

Next, they estimate different versions of the following model:

$$
\begin{align*}
\text { Earnings }_{i t} & =\beta_{0}+\beta_{1} Y 0_{-} 5_{i t}+\beta_{2} Y 6 _10_{i t}+\beta_{3} Y 11 _20_{i t}+\beta_{4} Y 21 _30_{i t}+\beta_{5} Y 30_{i t}+ \tag{1}\\
& +\beta_{6} \text { age }_{i t}+\beta_{7} \text { age }_{i t}^{2}+\beta_{8} \text { age }_{i t}^{3}+\beta_{8} \text { age }_{i t}^{4}+\beta_{9} \text { after } 1890+\theta_{t}+\alpha_{j}+a_{i}+u_{i t}
\end{align*}
$$

In equation (1), i indicates individuals and t time (1900, 1910, 1920). Earnings ${ }_{i t}$ measures the earnings of individuals in 2010 dollars; $Y 0 _5$ is an indicator that equals one if the migrant has spent in the US zero to 5 years and zero otherwise, Y6_10 is an indicator that equals one if the migrant has spent in the US 6 to 10 years and zero otherwise, and so on, until $Y 30$, which is an indicator that equals one if the migrant has spent in the US more than 30 years and zero otherwise. The omitted category here is being a US born. age i_{t} indicates the age of the individual, which appears as a fourth-degree polynomial; after1890 is an indicator that equals one if the migrant arrived after 1890. Finally, θ_{t} indicates Census year fixed effects, α_{j} indicates country of birth fixed effects and a_{i} indicates individual fixed effects.

The results from their analysis are reported in Table 1 on page 2. In column (1) and (2), the authors use the pooled data, and the model is estimated by OLS. In column (3), the authors use the panel data and the model is estimated using a fixed-effect estimator.
(a) (5 points) Interpret the coefficients for the years 0 to 20 reported in column (1). What can you conclude about the earnings profile of the immigrants?
(b) (10 points) Focus only on the results reported in column (1) and (2). Why does the immigrantnative earnings gap in the first five years since arrival $\left(\hat{\beta}_{1}\right)$ shrink?
(c) (10 points) A young referee suggests that part of the reasons that explain different assimilation profiles could be permanent differences in earnings between immigrant women and other groups, i.e. discrimination against immigrant women. The referee therefore proposes to include in the model of column (3) an indicator for being a female migrant. Provide a brief comment to this proposal.
(d) (15 points) The abstract of the paper reads along these lines: "Prior cross-sectional work finds that immigrants initially held lower-paid occupations than natives but converged over time. In newly-assembled panel data, we show that, in fact, the average immigrant did not face a substantial earnings penalty upon first arrival and experienced earnings growth at the same rate as natives. Cross-sectional patterns are driven by biases from declining arrival cohort quality and departures of negatively-selected return migrants." Discuss whether the conclusion that immigrant did not face substantial earnings penalties upon arrival could be questioned. Next, discuss whether cross-sectional patterns could be explained by other reasons besides cohort quality. Remember to base your statements on the concepts learned in class.

Table 1: Age-earnings profile for natives and foreignborn, 1900-1920

	POLS	POLS	FE
	Earnings	Earnings	Earnings
	(1)	(2)	(3)
0-5 Years in US	$-1,255.73$	-384.48	139.68
	(143.44)	$(187.30$	(57.96)
6-10 Years in US	-734.51	-2.89	313.81
	(147.44)	(172.05)	(113.61)
11-20 Years in US	-352.93	173.83	175.55
	(131.27)	(132.02)	(200.49)
$21-30$ Years in US	-294.87	128.44	-79.49
	(142.10)	(138.93)	(150.33)
$30+$ Years in US	22.41	155.77	78.07
	(184.65)	(178.49)	(186.55)
Arrive after 1890	-	-739.18	-
	-	(106.99)	-
Age controls	Yes	Yes	Yes
θ_{t}	Yes	Yes	Yes
α_{j}	Yes	Yes	-
N	205,458	205,458	65,804

Source: selected and modified results from Table 4, Abramitzky et al. (2014), p. 484.
Earnings are measured in 2010 dollars. See text for explanation of the other variables and of the different samples.

Exercise 2 (40 points)

Romer (1993) proposes theoretical models of inflation that imply that more open countries should have lower inflation rates. His empirical analysis explains average annual inflation rates (since 1973) in terms of the average share of imports in gross domestic product since 1973-which is his measure of openness. While Romer does not specify both equations in a simultaneous system, he has in mind a two-equation system:

$$
\begin{align*}
\text { inf } & =\beta_{10}+\alpha_{1} \text { open }+\beta_{11} \text { lpcinc }+\beta_{12} \text { oil }+u_{1} \tag{1}\\
\text { open } & =\beta_{20}+\alpha_{2} \text { inf }+\beta_{21} \text { lpcinc }+\beta_{22} \text { lland }+u_{2}, \tag{2}
\end{align*}
$$

where inf measures the annual inflation rate, open measures imports as \% of GDP, lpcinc is the log of 1980 per capita income measured in U.S. dollars, lland is the log of land area of the country measured in square miles and oil is a dummy variable that takes value of one if the country is an oil producer and zero otherwise.

The do-file of the analysis is reported on page 5 and the relative log-file starts on page 6 .
(a) (5 points) Consider first the analysis reported on line 17-21 of the do-file. Using a 5% significance level, test for heteroskedasticity.
(b) (10 points) Discuss under which conditions the estimator reported on line 27 and 28 of the do-file can identify the parameters α_{1} and α_{2}. If needed, base your answer on appropriate tests.
(c) (5 points) A commentator suggests to use land in levels, rather than in logs (lland), as an instrument for open. Provide at least two strategies based on which to decide which regressor to include.
(d) (10 points) How would you test whether the OLS and IV estimates on the equation for open are statistically different?
(e) (10 points) Explain whether you think the estimator used on line 27 of the do-file for \inf is consistent and efficient.

Exercise 3 (20 points)

In their article "Do police reduce crime? Estimates using the allocation of police forces after a terrorist attack." published in the American Economic Review (2004), Di Tella and Schargrodsky wirte: "An important challenge in the crime literature is to isolate causal effects of police on crime. Following a terrorist attack on the main Jewish center in Buenos Aires, Argentina, in July 1994, all Jewish institutions received police protection. Thus, this hideous event induced a geographical allocation of police forces that can be presumed exogenous in a crime regression. Using data on the location of car thefts and police forces before and after the attack, we find a large deterrent effect of observable police on crime".
(a) (10 points) Let CarTheft ${ }_{i t}$ indicate the number of car thefts in location i at time t, and New Police $_{i t}$ the number of policemen allocated to location i at time t. Explain which model you think the authors are using to pin down the causal effect of police on crime.
(b) (10 points) Interpret the coefficient(s) you have mentioned at point (a).

```
* Exam Spring 2019: Question 2 Do-File
**************************************************
clear all
cd "/Users/co/Documents/Teaching/Courses Taught/Econometrics/NTNU/Exam"
log using exam_s19, replace text
use OPENNESS.DTA
***
reg inf oil lpcinc lland
predict res, res
gen ressq= res*res
reg ressq oil lpcinc lland
***
reg inf oil lpcinc lland
reg open oil lpcinc lland
ivregress 2sls inf lpcinc oil (open = lland), robust
ivregress 2sls open lpcinc land (inf = oil), robust
log close
```

name: <unnamed>
 log type: text
opened on: 6 May 2019, 14:57:10
1.
2.

3 . use OPENNESS.DTA
4 .
5
6 . ***
. reg inf oil lpcinc lland

Source	SS	df	MS	Number of obs	=	114
				F (3, 110)	=	2.04
Model	3436.23107	3	1145.41036	Prob > F		0.1119
Residual	61637.1906	110	560.338097	R -squared		0.0528
				Adj R-squared		0.0270
Total	65073.4217	113	575.870989	Root MSE		23.671

inf	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
oil	-6.690162	9.709693	-0.69	0.492	-25.9325	12.55217
lpcinc	. 6279128	2.084876	0.30	0.764	-3.503823	4.759648
lland	2.549812	1.083075	2.35	0.020	. 4034102	4.696213
cons	-15.50321	21.49386	-0.72	0.472	-58.099	27.09257

- predict res, res

```
gen ressq= res*res
```

10
11
. reg ressq oil lpcinc lland

Source	SS	df MS		Number of obs$F(3,110)$	114	
				0.71		
Model	23172800.5	3	7724266.82		Prob > F	0.5493
Residual	$1.2002 e+09$	110	10910513.4	R -squared	0.0189	
				Adj R-squared	-0.0078	
Total	$1.2233 e+09$	113	10825922.7	Root MSE	3303.1	
ressq	Coef.	Std. Err	t	P>\|t	[95\% Con	. Interval]
oil	-619.0514	1354.887	-0.46	$0.649 \quad-3304.119$	2066.016	
lpcinc	115.9505	290.9229	0.40	$0.691-460.5903$	692.4913	
lland	208.7068	151.1319	1.38	$0.170 \quad-90.80121$	508.2148	
_cons	-2631.407	2999.245	-0.88	$0.382-8575.206$	3312.392	

12
13
14
15 . reg inf oil lpcinc lland

Source	SS	df	MS
Model	3436.23107	3	1145.41036
Residual	61637.1906	110	560.338097
Total	65073.4217	113	575.87098

Number of obs	$=$	114
F (3, 110)	$=$	2.04
Prob $>\mathrm{F}$	$=$	0.1119
R-squared	$=$	0.0528
Adj R-squared	$=$	0.0270
Root MSE	$=$	23.671

inf	Coef.	Std. Err.	t	$\mathrm{P}>\mid \mathrm{t}$ \|	[95\% Conf. Interval]	
-il	-6.690162	9.709693	-0.69	0.492	-25.9325	12.55217
lpcinc	. 6279128	2.084876	0.30	0.764	-3.503823	4.759648
lland	2.549812	1.083075	2.35	0.020	. 4034102	4.696213
_cons	-15.50321	21.49386	-0.72	0.472	-58.099	27.09257

. reg open oil lpcinc lland

Source	SS	df	MS	Number of obs	114	
				F (3, 110)	29.84	
Model	28607.1395	3	9535.71318	Prob > F	0.0000	
Residual	35150.8507	110	319.553188	R -squared	0.4487	
				Adj R-squared	0.4336	
Total	63757.9902	113	564.230002	Root MSE	17.876	
open	Coef.	Std. Err.	t P	P>\|t	[95\% Con	Interval]
-il	. 3989381	7.332499	0.05	$0.957-14.13235$	14.93023	
lpcinc	. 5204514	1.574443	0.33	$0.742-2.599724$	3.640627	
lland	-7.566865	. 8179095	-9.25	$0.000 \quad-9.18777$	-5.945961	
_cons	117.2567	16.23158	7.22	$0.000 \quad 85.08954$	149.4239	

17 . ivregress $2 s l s$ inf lpcinc oil (open $=$ land), robust

inf	Robust						
	Coef.	Std. Err.	z	P>\|z		[95\% Con	Interval]
open	-. 3369707	. 1500285	-2.25	0.025	-. 6310211	-. 0429202	
lpcinc	. 8032896	1.527911	0.53	0.599	-2.19136	3.797939	
oil	-6.555731	3.708423	-1.77	0.077	-13.82411	. 7126437	
cons	24.00886	11.28069	2.13	0.033	1.899121	46.11861	

Instrumented: open
Instruments: lpcinc oil lland


```
    Instrumented: inf
    Instruments: lpcinc land oil
22 . log close
    name: <unnamed>
        log: C:\Users\costanzb\Documents\Teaching\Courses Taught\Econometrics\NTNU\Exam\exam_s19
    log type: text
    closed on: 6 May 2019, 14:57:10
```

19
20
21

Statistical Tables

TABLE G. $\mathbf{1}$	Cumulative Areas under the Standard Normal Distribution	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$					
\boldsymbol{z}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$		
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776

TABLE G. 1 (Continued)										
z	0	1	2	3	4	5	6	7	8	9
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Examples: If $Z \sim \operatorname{Normal}(0,1)$, then $\mathrm{P}(Z \leq-1.32)=.0934$ and $\mathrm{P}(Z \leq 1.84)=.9671$.
Source: This table was generated using the Stata ${ }^{\circledR}$ function normprob.

TABLE G. 2 Critical Values of the t Distribution

Significance Level					
1-Tailed:	. 10	. 05	. 025	. 01	. 005
2-Tailed:	. 20	. 10	. 05	. 02	. 01
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
D 10	1.372	1.812	2.228	2.764	3.169
d 11	1.363	1.796	2.201	2.718	3.106
g $\quad 12$	1.356	1.782	2.179	2.681	3.055
r 13	1.350	1.771	2.160	2.650	3.012
e 14	1.345	1.761	2.145	2.624	2.977
e 15	1.341	1.753	2.131	2.602	2.947
s 16	1.337	1.746	2.120	2.583	2.921
- 17	1.333	1.740	2.110	2.567	2.898
f 18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
F 20	1.325	1.725	2.086	2.528	2.845
r e	1.323	1.721	2.080	2.518	2.831
e 22	1.321	1.717	2.074	2.508	2.819
d 23	1.319	1.714	2.069	2.500	2.807
o 24	1.318	1.711	2.064	2.492	2.797
m 25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
60	1.296	1.671	2.000	2.390	2.660
90	1.291	1.662	1.987	2.368	2.632
120	1.289	1.658	1.980	2.358	2.617
∞	1.282	1.645	1.960	2.326	2.576

Examples: The 1% critical value for a one-tailed test with $25 d f$ is 2.485 . The 5% critical value for a two-tailed test with large $(>120) d f$ is 1.96 .

Source: This table was generated using the Stata ${ }^{\circledR}$ function invttail.

TABLE G.3a 10\% Critical Values of the F Distribution

		Numerator Degrees of Freedom									
		1	2	3	4	5	6	7	8	9	10
	10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32
	11	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25
D	12	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19
n	13	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14
0	14	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10
\mathbf{m}	15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06
n	16	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03
$\begin{aligned} & \mathbf{a} \\ & \mathbf{t} \end{aligned}$	17	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00
0	18	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98
r	19	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96
D	20	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94
e	21	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92
r	22	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90
e	23	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89
S	24	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88
0	25	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87
f	26	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86
	27	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85
r	28	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84
e	29	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83
$\begin{aligned} & \mathbf{e} \\ & \mathbf{d} \end{aligned}$	30	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82
0	40	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76
m	60	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71
	90	2.76	2.36	2.15	2.01	1.91	1.84	1.78	1.74	1.70	1.67
	120	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65
	∞	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60

Example: The 10% critical value for numerator $d f=2$ and denominator $d f=40$ is 2.44 .
Source: This table was generated using the Stata ${ }^{\circledR}$ function invFtail.

TABLE G.3b 5% Critical Values of the F Distribution

		Numerator Degrees of Freedom									
		1	2	3	4	5	6	7	8	9	10
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
D	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
n	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
0	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
m	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
n	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
$\begin{gathered} \mathbf{a} \\ \mathbf{t} \end{gathered}$	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
0	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
r	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
D	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
e	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32
$\underset{\mathbf{r}}{\mathbf{r}}$	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
e	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
S	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
$\begin{aligned} & \mathbf{0} \\ & \mathbf{f} \end{aligned}$	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
r	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
e	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
$\begin{aligned} & \mathbf{e} \\ & \mathbf{d} \end{aligned}$	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
0	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
m	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
	90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91
	∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Example: The 5% critical value for numerator $d f=4$ and large denominator $d f(\infty)$ is 2.37 .
Source: This table was generated using the Stata ${ }^{\circledR}$ function invFtail.

APPENDICES

		Numerator Degrees of Freedom									
		1	2	3	4	5	6	7	8	9	10
	10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
	11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
D	12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
$\begin{aligned} & \mathbf{e} \\ & \mathbf{n} \end{aligned}$	13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
0	14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94
$\underset{\mathbf{i}}{\mathbf{m}}$	15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80
n	16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69
$\begin{gathered} \mathbf{a} \\ \mathbf{t} \end{gathered}$	17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59
0	18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51
r	19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43
D	20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
e	21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31
$\begin{aligned} & \mathbf{g} \\ & \mathbf{r} \end{aligned}$	22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26
e	23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21
$\begin{aligned} & \mathbf{e} \\ & \mathbf{S} \end{aligned}$	24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17
	25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13
$\begin{aligned} & \mathbf{0} \\ & \mathbf{f} \end{aligned}$	26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09
	27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06
F	28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03
e	29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00
$\begin{aligned} & \mathbf{e} \\ & \mathbf{d} \end{aligned}$	30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98
0	40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80
m	60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63
	90	6.93	4.85	4.01	3.54	3.23	3.01	2.84	2.72	2.61	2.52
	120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47
	∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32

Example: The 1% critical value for numerator $d f=3$ and denominator $d f=60$ is 4.13 .
Source: This table was generated using the Stata ${ }^{\circledR}$ function invFtail.

TABLE G. 4 Critical Values of the Chi-Square Distribution

		Significance Level		
		. 10	. 05	. 01
	1	2.71	3.84	6.63
	2	4.61	5.99	9.21
	3	6.25	7.81	11.34
	4	7.78	9.49	13.28
	5	9.24	11.07	15.09
	6	10.64	12.59	16.81
	7	12.02	14.07	18.48
	8	13.36	15.51	20.09
D	9	14.68	16.92	21.67
e	10	15.99	18.31	23.21
$\underline{\mathrm{g}}$	11	17.28	19.68	24.72
r	12	18.55	21.03	26.22
e	13	19.81	22.36	27.69
S	14	21.06	23.68	29.14
0	15	22.31	25.00	30.58
f	16	23.54	26.30	32.00
F	17	24.77	27.59	33.41
r	18	25.99	28.87	34.81
e	19	27.20	30.14	36.19
d	20	28.41	31.41	37.57
m	21	29.62	32.67	38.93
	22	30.81	33.92	40.29
	23	32.01	35.17	41.64
	24	33.20	36.42	42.98
	25	34.38	37.65	44.31
	26	35.56	38.89	45.64
	27	36.74	40.11	46.96
	28	37.92	41.34	48.28
	29	39.09	42.56	49.59
	30	40.26	43.77	50.89

Example: The 5% critical value with $d f=8$ is 15.51 .
Source: This table was generated using the Stata ${ }^{\circledR}$ function invchi2tail.

