

Institutt for samfunnsøkonomi

## Eksamensoppgave i SØK3524 – Miljø- og ressursøkonomi

Faglig kontakt under eksamen: Anders Skonhoft

Tlf.: 73 59 19 39

**Eksamensdato:** 28. november 2016

**Eksamenstid:** 6 timer (09.00-15.00)

Sensurdato: 19. desember 2016

**Tillatte hjelpemidler:** Flg formelsamling: Knut Sydsæter, Arne Strøm og Peter Berck (2006): Matematisk formelsamling for økonomer, 4utg. Gyldendal akademiske. Knut Sydsæter, Arne Strøm, og Peter Berck (2005): Economists' mathematical manual, Berlin. Enkel kalkulator Casio fx-82ESPLUS, Citizen SR-270x, HP 30S eller SR-270X College

Målform/språk: Engelsk

Antall sider: 2 (inkl. forside)

Antall sider vedlegg: 0

## **Question 1**

The abatement cost function of a firm writes  $C_i = \alpha_i (\hat{M}_i - M_i) + \beta_i (\hat{M}_i - M_i)^2$  where  $\hat{M}_i$  is the emission without abatement ('business as usual') and  $M_i$  the actual emission.  $\alpha_i > 0$  and  $\beta_i > 0$  are parameters. Altogether there are two polluting firms.

- a) The regulator ('Statens Forurensningstilsyn') has established a market for tradable emission permits and where the total amount of permits is  $\overline{M}$ . Assume that the initial amount of permits to each of the firm is given as  $M_i^0$  and the quota price is p. Find the demand for emission by the firms and the quota price.
- b) Formulate instead the problem if the regulator wants to minimize the total abatement costs subject to the emission cap  $\bar{M}$ .
- c) Discuss finally any possible connections between the solution of the above problem a) and b).

## **Ouestion 2**

- a) Discuss briefly the concept of 'sustainable development'.
- b) Discuss briefly problems of how to regulate a fishery

## **Question 3**

A landowner is controlling a wildlife stock that grows according to dX/dt = F(X) - h. She sells hunting licences for a fixed price p. The wildlife also causes a value due to tourism etc. This value is assumed to be related to the stock, and the value function writes W = W(X). The current profit of the landowner hence writes  $\pi = ph - W(X)$ .

- a) Formulate the optimal management strategy of the landowner and find the stock and hunting when the goal is to maximize present-value profit. Consider both the transitional dynamics and the steady-state.
- b) Find how the price p and the discount rent  $\delta$  influence the optimal landowner steady-state stock and hunting.
- c) Assume that the natural growth is governed by the logistic function F(X) = rX(1 X/K). Interpret the parameters of this function, and find how these parameters influence the above optimal steady-state.
- d) Assume finally that the wildlife also causes a negative externality on the general public in the form of browsing damage. How would you have incorporated such value in the management problem if you had been the social planner?