Exam in FIN3005 Asset Pricing (Spring 2016)

Make the assumptions you find necessary.

Problem 1 (75\%) A Guaranteed Investment Contract (GIC) is a contract that gives the investor a return on his investment that is equal to the maximum of the return on some underlying asset (typically the return on some stock index) and a minimum guaranteed return. Assume that the time $T>0$ value of the underlying asset under the equivalent martingale measure Q ("the risk neutral probability measure") is given by

$$
S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma z_{T}},
$$

where S_{0} is the current value of the underlying asset, r is the risk-free interest rate, σ is the instantaneous standard deviation of the return on the underlying asset, and z is a standard Brownian motion. If g is the guaranteed return per year, the GIC has time T payoff

$$
G_{T}=\max \left(\frac{S_{T}}{S_{0}}, e^{g T}\right) .
$$

a) Use the martingale approach to find an expression for the current value of the GIC, G_{0}.
b) Explain why $G_{0}>1$. (Hint: $\frac{S_{T}}{S_{0}}$ is a gross return.)

Another GIC gives the investor a minimum guaranteed return each year. The time T value is given by

$$
H_{T}=\prod_{i=1}^{T} \max \left(\frac{S_{i}}{S_{i-1}}, e^{g}\right) .
$$

c) Find the current value of the GIC, $H_{0} .\left(\right.$ Hint: $\left.\operatorname{cov}\left(\frac{S_{t}}{S_{t-1}}, \frac{S_{t+1}}{S_{t}}\right)=0.\right)$
d) Explain why $H_{0} \geq G_{0}$.

Problem 2 (25\%) In class we derived the following expression for the risk-free interest rate when the consumption process follows a stochastic process:

$$
r^{f}=\delta+\gamma \mu-\frac{\gamma}{2}(\gamma+1) \sigma^{2}
$$

Give an economic interpretation of the three terms in the expression for the risk-free interest rate.

