Full credit given to very complete and detailed answers

Full/ near-full credits as long as answers align with some correct subsets of the below
content

Full credit given to correct statement without supporting equations

Partial credit if there is obvious mistakes/ wrong statement

Question 1 (10 points)

Define (weak) stationarity and explain why it is important in time series analysis.
Explain what is a unit root test and how to set up the null and alternative
hypothesis for a unit root test.

Weak stationary is defined by the characteristic statistics, i.e. low order moments,
of the stochastic process

The idea is that as long as the low order moments are stationary, the stochastic
process can be considered as stationary

A stochastic process {X;}|is weak stationary if:

(1) EX: = p = constant
(2)  Var(X;) = constant, (EX? < o)
(3) Cov(Xt, X¢+r)depends only on7and not on t

It is also called covariance stationary or second-order stationary

Technically, stationarity simplifies statements of the law of large numbers and the
central limit theorem, and by appealing to LLN and CLT OLS is argued to be
generally justified

On practical level, we need to assume some sort of stability over time. e.g., If we
allow the variable x; to change arbitrarily in each time period, then we cannot
hope to learn much about its pattern, since we only observe a single time series
realization

It is useful for multivariate regression model for time series data, where we are
assuming a certain form of stationarity in 3 - the coefficient doesn't change over
time



We can also use a statistical test to check if a time series process is stationary

» The most popular test is unit root test

- Unit root test: to test whether the characteristic roots are inside or outside the
unit circle

Dickey-Fuller tests

Let's use AR(1) model as an example

Xt = O1Xt—1 + ¢, E¢ ~ N(O,Uf)

» The characteristic equation of the processis: A\ — ¢; =0
» The characteristic root is : A = ¢

If the characteristic root is within the unit circle, the process is stationary

’01’ <1

If the characteristic root is outside or on the unit circle, the process is non-stationary

lo1] > 1

We can therefore conduct tests to check the stationarity of the time series process (by
testing on the unit root)

» Hy: the time series process x; is non-stationary

Ho : |p1] > 1

» Hi: the time series process x; is stationary

Hl:‘“l <1



Augmented Dickey-Fuller tests

Let's consider a more general AR(p) model now as

p—1
Axe = p+ Bt + (p— 1)xe—1 + Z BiAxi—j + ¢
j=1

where Ax;_; = x; — xj_1 is the differenced series of x;

p—1
» ADF-test = —
SD(p)
Ho P = 1
H:p<1

» The critical value can again be obtained through simulation. DF-test is a special
case of ADF-test when p-order=1

Question 2 (10 points)

Discuss the difference between trend-stationary and difference-stationary time
series. How can differencing be used to achieve stationarity in a time series?
Explain what it means for a time series to be integrated of certain order and
discuss how we handle integrated series.

Random walk model

Xt = Xt—1 + €t

where X is a real number denoting the starting value of the process and {c;} is a
white noise series

» The current outcome = the last period’s outcome plus white noise

» A special AR(1) process with ¢; = 1, therefore, not weakly stationary — unit-root
nonstationary time series

» Time-varying and increasing variance function of time
E(xt) = xo

Var(x;) = to?



Take the first difference:
AXt = Xt — th]_ - Et
> E(Ax;) =0 and Var(Ax;) = o2

» The first difference of x; is a stationary process, with constant mean and constant
variance

» Therefore a random walk process (without drift) is also called a difference
stationary process

Trend-stationary model

Xt = Bo + [it + ¢

» The current outcome grows linearly in time with rate 31 + stationary process
» E(xt) = o + fit and Var(x;) = Var(ey)
» The mean depends on time, and variance is finite and time-invariant

» Xx; exhibits behavior similar to that of a random walk with drift

The best way to make the residual series stationary for trend-stationary model is to fit
a linear regression, instead of performing differencing. Both ways can achieve
trend-stationary, however the latter increases the variance of the residual series

If a non-stationary series x; must be differenced d times before it becomes stationary,
it is integrated of order d: x; ~ /(d)

Therefore if x; ~ I(d), then Ax; ~ 1(0)
- An 1(0) series is stationary
- An I(1) series can contain one unit root

- An 1(2) can contain two unit roots and must therefore be differenced twice to
become stationary



We can use ARIMA model to estimate difference-stationary time series process
ARIMA model is the combination of ARMA model and differencing operation

If a nonstationary series can be transformed to a stationary series through
differencing of d times, then the original series can be estimated by ARIMA(p,d,q)

ARIMA model has non-constant mean and non-finite variance for d # 0

We can use ARIMA model to conduct forecasting the same way as we use ARMA
model

Question 3 (10 points)
Briefly describe the purpose and interpretation of forecast error metrics. List and explain
at least two measures of the forecast error metrics we discussed in the lecture.

The forecasts will not be perfectly accurate and the forecast error j periods ahead is
defined as

et(j) = Xt — Et(xt+j)

We use different ways to summarize forecasting error, in order to evaluate the accuracy
of the forecast

» Easy to compute and understand: mean absolute error (MAE)
» Widely used: root mean squared error (RMSE)
» Not friendly with 0, mean absolute percentage error (MAPE) = mean(|100¢;/x|)

» Independent of the scale of the data: mean absolute scaled error (MASE) =
e/ ZZ—ZQ |x¢ — x¢—1|, scaling the errors based on the training MAE

Note there is a typo in the instruction, where says no need to derive in Question 4 and
5 (which actually was meant for Q5 an Q6, multiple choice questions).

Full/near-full credit can be given to correct answers without detailed derivation (in light
of the instruction mistake)
Partial credit given to wrong answers

Question 4 (50 points)
(1) Find the mean and the variance of the above AR(1) process.



For a stationary AR(1) processes, the mean:

00
EXt =

11—

E(x¢) = 0, for demeaned processes

We use the MA representation of AR(1):
Xt(]- — C)L) =&t

o0
Xt = (1 — (,7)L)_1€t = Z Qﬁj&‘t_j

Jj=0
So
00 2
O Z 2 ) 2 9 _
j=0 !

(2) Derive the autocorrelation function (ACF) and the partial autocorrelation function
(PACF) of the above AR(1) process.

1= E(ox) = E((0x1 +20)(xe1) ) = 002 p=0o

Y2 = E(Xexe—2) = E((Ozxt—2 + OXe—1+ Et)(><t—2)) = p2 = ¢?

X
1k ~ _ .k 2 _ .k
Yk = E(XtXt—k) = E((O Xt—k +e+--- )(Xt—k)) =0 O Pk = 0]
The PAC ¢y between x; and x;_j is the correlation coefficient between x; and x;_x

conditional on, or controlling for, the effects of x;_1,--- ., Xr—k_1

011 = P1



The PAC ¢;; can be found as the coefficient of the final lag in the autoregressions:

Xt = Qo + P11Xe—1 + €1t

Xt = Qo + O1Xe—1 + O22Xe—2 + €2¢

Xt = Q0 + O1Xe—1 + O2Xe—2 + -+ - + Ok Xe—k + €k ¢

The ¢ji measures the correlation between x; and x;_; after removing the effects of
Xe—id1s Xe—i42, 00 5 Xe—1

» The partial autocorrelation function (PACF) is the ¢;; plotted against period
i=1,--- k.k+1,---

» ACF = PACF at first lag

If the true model is AR(p), the theoretical PACF will be zero after lag p

(3) Suppose now you don’t know whether the above AR(1) model is stationary and
please find out the necessary and sufficient conditions for this model to be
stationary.

Xt = 01Xt—1 + &t

The characteristic equation is A — ¢ = 0
The characteristic root is A = &1
AR(1) is stationary if and only if

|p1] < 1

The stationary region of AR(1) model is {—1 < ¢1 < 1}

(4) Now you are using this AR(1) model to make prediction. Derive the one-step
forecast, Et(xt+1). Show that as the forecast horizon goes to infinity, the limit
of the conditional mean converges to its unconditional mean.

For AR(1) process:
Xy = @Xt_l + Et

Et(Xtil) = OXt



Ei(Xt+1) = OX¢
Ei(xt+2) = O*xt

Et(Xt+3) = (5)3Xt

Ee(Xerk) = 0*xe

As k goes to infinity, the forecast converges to the unconditional mean zero

(5) The process exhibits the feature of mean reversion, and in finance it is often
useful to express it as the half-life. Explain what is half-life and derive the half-life
of AR(1).

For stationary AR(p) model, the conditional point forecast is shown to converge to its
unconditional mean

This property is referred to as the mean reversion in the finance literature

For an AR(1) model, the speed of mean reversion is measured by the half-life
I = In(0.5)/In(|¢1])

Partial credit given to partially correct choices in Q5
Question 5: ABCD
Question 6: D



