Exam in FY8304 Mathematical Approximation Methods in Physics
Thursday 9. December 2004
Time: 09:00—14:00

Exam aids: (Alternative B): Approved calculator.

This exam consists of 2 pages and a general addendum of 1 page.

Problem 1:
Consider the differential equation

\[x^4 y''(x) + x^3 y'(x) - y(x) = 0. \]

a) Find and classify the singular points for this equation.

b) Determine the possible leading asymptotic behavior for \(y(x) \) when

i. \(x \to 0. \)

ii. \(x \to 1. \)

iii. \(x \to \infty. \)

Problem 2:
Determine leading behavior of the integral

\[I(a) = \int_0^\infty dt e^{-t+a} t^a, \]

for

a) the limit \(a \to 0, \)

b) the limit \(a \to \infty. \)
Problem 3:
Consider the boundary value problem
\[
\frac{1}{100} y''(x) + (x^2 + 1)y'(x) - x^3 y(x) = 0, \quad y(0) = y(1) = 1. \tag{1}
\]
Introduce the perturbation parameter $\epsilon = 1/100$ in the first term, and use the boundary layer method to find

a) The outer and inner regions, and how the thickness of any boundary layer scales with ϵ.

b) The outer and inner equations, and their solutions.

c) The condition for matching the outer and inner solution, and the uniform approximation.

d) Make a sketch of the uniform approximation to Equation (1).

Problem 4:
The WKB solution to the eigenvalue problem
\[
\epsilon^2 y''(x) + Q(x, E)y(x) = 0,
\]
where $Q(x) = V(x) - E$, has the leading order solution
\[
y(x) \approx \frac{1}{[Q(x, E)]^{1/4}} \exp \left(\pm \frac{1}{\epsilon} \int_x^1 dt \sqrt{Q(t)} \right).
\]

a) Show that the connection formula from region I (with $Q(x) > 0$ to region III (with $Q(x) < 0$) is
\[
y_{III} = 2C \frac{1}{[Q(x, E)]^{1/4}} \sin \left(\frac{1}{\epsilon} \int_x^{x_0} dt \sqrt{-Q(t) + \frac{\pi}{4}} \right)
\]
\[
\leftarrow y_{II} = C \frac{1}{[Q(x, E)]^{1/4}} \exp \left(-\frac{1}{\epsilon} \int_{x_0}^x dt \sqrt{Q(t)} \right).
\]
Assume that the two regions are connected by a region II, where $Q(x)$ is approximately linear.

b) Use the connection formula to find the WKB eigenvalue condition.

c) Consider bound states ($E < 0$) in the potential $V(x)$ given by
\[
V(x) = -\frac{V_0}{\cosh^2 x},
\]
and find the WKB approximation to the eigen-values E_n. Are there any limitations of the quantum number n?
Some information that may be useful

Airy functions

\[\text{Ai}(x) \approx \frac{1}{2\sqrt{\pi}} x^{-1/4} \exp\left(-\frac{2}{3}x^{3/2}\right) \quad x \to \infty \]

\[\text{Bi}(x) \approx \frac{1}{\sqrt{\pi}} x^{-1/4} \exp\left(\frac{2}{3}x^{3/2}\right) \quad x \to \infty \]

\[\text{Ai}(x) \approx \frac{1}{\sqrt{\pi}} (-x)^{-1/4} \sin\left(\frac{2}{3}(-x)^{3/2} + \frac{\pi}{4}\right) \quad x \to -\infty \]

\[\text{Bi}(x) \approx \frac{1}{\sqrt{\pi}} (-x)^{-1/4} \cos\left(\frac{2}{3}(-x)^{3/2} + \frac{\pi}{4}\right) \quad x \to -\infty \]

A numerical value

\[\sqrt{\frac{2}{e}} = 0.85776... \]

A WKB integral

\[\int_{-u_0}^{u_0} \sqrt{u_0^2 - u^2} \frac{du}{1 + u^2} = \pi \sqrt{u_0^2 + 1} \]