Faglig kontakt under eksamen:
Professor Johan S. Høye/Professor Asle Sudbø
Telefon: 91839082/40485727

Eksamen i TFY4106 FYSIKK
Onsdag 13. august 2008
09:00–13:00

Tillatte hjelpemidler: Alternativ C
Typegodkjent kalkulator, med tomt minne (i henhold til NTNU liste).
K. Rottman: Matematisk formelsamling (alle språkutgaver).
Schaum's Outline Series: Mathematical Handbook of Formulas and Tables.

Dette oppgavesettet er på 5 sider.

Sensurfrist: 1. september
(Hver av oppgavene 1, 2, 3 og 4 teller like mye.)
Oppgave 2. Svingninger og bølger

a) I en avstand av $R_1 = 12\,\text{m}$ fra en lydkilde er lydintensitetsnivået $\beta = 87\,\text{dB}$. Hvor stor lydeffekt P sender lydkilden ut når energien sendes ut jevnt fordelt i alle retninger? I hvilken avstand R_2 er lydintensitetsnivået $72\,\text{dB}$?

b) To stemmegafler som ikke stemmer overens, gir en svevefrekvens (frekvensforskjell) $\Delta f = 4,0\,\text{Hz}$ når de svinger samtidig. Deres midlere frekvens er $f = 262\,\text{Hz}$. Dersom de 2 stemmegaflene plasseres et stykke fra hverandre, kan denne svevingen oppheves ved at vedkommende som lytter til disse, løper fra den ene stemmegaflen til den andre. Hvor fort må vedkommende løpe for at svevingen skal oppheves? Lydhastigheten antas å være $c = 345\,\text{m/s}$.

Oppgitt: $\beta = 10\log_{10}(I/I_0)\,\text{dB}$, $I_0 = 10^{-12}\,\text{W/m}^2$,

$$\Delta f = f_1 - f_2,$$
$$f_r = f_s \frac{c + v_r}{c + v_s}$$ (dopplereffekten).
Oppgave 1. Mekanikk

a) En hul sylinder har indre radius R_i og ytre radius R_y. Sylinderen har masse m som er jevnt fordelt mellom radiene R_i og R_y. Vis at treghetsmomentet I til sylinderen om sylinderaksen eller sentrum av sylinderen er gitt ved

$$I = \gamma m (R_i^2 + R_y^2),$$

og bestem med det koeffisienten γ. [Hint: Benytt at treghetsmomentet om sylinderaksen til en massiv sylinder med masse M og radius R_y er gitt ved $\frac{1}{2}MR_y^2$. Fjern så en sylinder med radius R_i, og som har masse MR_i^2/R_y^2, fra denne.]

b) En masse m_1 henger i et tau som går over ei trinse eller talje på et sted der radien er R_1. En annen masse m_2 ligger på et horisontalt bord og er festet med et tau til den samme trinsa på et annet sted der radien er R_2, som vist på figuren. Massen m_2 holdes først fast slik at systemet er i ro. Hva er da strekkene eller kreftene F_1 og F_2 i tauene når tyngdeakselerasjonen er g?

Massen m_2 slippes så, og den vil begynne å bevege seg fordi massen m_1 begynner å falle. Anta at massen m_2 glir friksjonsfritt bortover og at trinse roterer friksjonsfritt. Hva blir vinkekakselerasjonen α til trinsa når den har treghetsmoment I? [Hint: Bestem først hvordan akselerasjonene a_1 og a_2 til m_1 og m_2 kan uttrykkes ved α, og bestem videre hvordan F_1 og F_2 avhenger av akselerasjonene.]

Oppgitt: $x^2 - y^2 = (x - y)(x + y)$.
Oppgave 3. Termisk fysikk

a) En tømmervegg av tre har midlere tykkelse 15 cm. Arealet til veggen er 60 m². Anta at temperaturen på innersiden av veggen er 20°C mens den på ytttersiden er 8°C. Hva er den totale varmestrommen \(I \) gjennom veggen (ved stasjonære forhold) når varmeledningsevnen for tre er \(\lambda = 0,080 \, \text{W/(m-K)} \)?

For å isolere veggen bedre legges det et 5 cm tykt lag med mineralull på denne. Mineralull har varmeledningsevnen 0,040 \(\text{W/(m-K)} \). Betrakt så situasjonen der varmestrommen \(I \) er uendret. Hva er da temperaturen \(T_y \) på yttersiden av veggen dersom temperaturen på innersiden er uendret?

b)

En ideell gass med adiabatkonstant \(\gamma = 1,4 \) komprimeres adiabatisk fra trykket \(p_1 \) til trykket \(p_2 \) mellom punktene 1 og 2 på figuren. Deretter avkjøles gassen ved konstant trykk \(p_2 \) til punkt 3 der temperaturen er tilbake til starttemperaturen \(T_1 = 290 \, \text{K} \) i punkt 1.

Hva er volumene \(V_2 \) og \(V_3 \) i henholdsvis punktene 2 og 3 når startvolumet i punkt 1 er \(V_1 = 24 \, \text{dm}^3 \) og forholdet \(p_2/p_1 = 3,0 \)?

Hva blir temperaturen \(T_2 \) etter den adiabatiske kompresjonen?

Oppgitt: \(I = \lambda A \frac{\Delta T}{\Delta x} \)
Oppgave 4. Elektrisitet og magnetisme

a)

En hul, uendelig lang strømførende sylinder med radius R fører en total strøm I inn i papirplanet, som vist på figuren. Strømmen er jevnt fordelt over sylinderskallet, som regnes som uendelig tynt. Bruk Ampère’s lov til å beregne magnetfeltet $B(r)$ innenfor og utenfor sylinderskallet der r er avstanden fra sylnderens sentralakse.

b)

En åpen strømsløyfe er satt inn i et homogent magnetfelt B som er rettet inn i papirplanet, som vist på figuren. En uendelig tynn strømførende ledning med lengde L lukker sløyfen. Denne lederen kan bevege seg langs x-aksen, der $x = 0$ er satt ved strømsløyfens venstre kant.

i) La først den uendelig tynne lederen ligge i ro i posisjonen x der $0 < x < 2L$, og la magnetfeltet B variere med tiden som $B(t) = B_0 \sin(\omega t)$. Bruk Faraday’s lov til å finne den induserte ems (elektromotoriske spenningen) som settes opp rundt den lukkede sløyfen av denne tidsvariasjonen i magnetfeltet.

ii) La så $B = B_0$ være konstant som funksjon av tiden, og la lederen med lengde L bevege seg med konstant hastighet v til høyre langs x-aksen. Bruk Faraday’s lov til å finne den induserte ems som settes opp rundt den lukkede sløyfen av denne bevegelsen, så lenge $x < 2L$.

iii) Dersom tidsvariasjonen i i) og bevegelsen i ii) kombineres, hva blir da den induserte ems rundt strømsløyfen?

Oppgitt: Ampère’s lov: $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I$,

Faraday’s lov: $\mathcal{E} = -\frac{d\Phi}{dt}$, \[\Phi = \int \mathbf{B} \cdot d\mathbf{A} \]
Formelliste for faget TFY4106 Fysikk høsten 2007

Formlenes gyldighetsområde og de ulike symbolenes betydning antas å være kjent.
Symbolbruk er for det meste som i forelesninger og kompendium.

Fysiske konstanter:

\[g = 9.8 \text{ m/s}^2 \quad N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \quad k_B = 1.38 \times 10^{-23} \text{ J/K} \quad R = N_A k_B = 8.31 \text{ J mol}^{-1} \text{K}^{-1} \]

\[1 \text{ atm} = 101.3 \text{ kPa} \quad 0^\circ \text{C} = 273 \text{ K} \quad \sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4} \quad h = 6.63 \times 10^{-34} \text{ Js} \]

\[\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2 \quad \mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2 \quad e = 1.6 \times 10^{-19} \text{ C} \quad m_e = 9.1 \times 10^{-31} \text{ kg} \]

Elementær mekanikk:

\[\frac{dp}{dt} = \vec{F} (\vec{r}, t) \quad \text{med} \ \vec{F} (\vec{r}, t) = m \vec{v} \quad \vec{F} = m \vec{a} \quad \text{Konstant a:} \quad \vec{v} = \vec{v}_0 + \vec{a}t \quad s = s_0 + \vec{v}_0 t + \frac{1}{2} \vec{a}t^2 \]

\[dW = \vec{F} \cdot d\vec{r} \quad \text{Kinetisk energi} \ W_k = \frac{1}{2} m \vec{v}^2 \quad V(\vec{r}) = \text{potensiell energi} \ (f.eks. tyngde: mgh, fjær: \frac{1}{2} kx^2) \]

\[F_x = -\frac{\partial}{\partial x} V(x, y, z) \quad E = \frac{1}{2} m \vec{v}^2 + V(\vec{r}) + \text{friksjonsarbeide} = \text{konstant} \]

\[|\vec{F}_k| = \mu_k \cdot F_k \quad |\vec{F}_l| = \mu_k \cdot F_k \quad \vec{F}_i = -kr \vec{v} \]

Dreiehastighet \ \vec{\omega} = \omega \hat{e}_z \quad |\vec{\omega}| = \omega = \dot{\theta} \quad \text{Vinkelaccelerasjon} \ \vec{\alpha} = \frac{d\vec{\omega}}{dt} \quad \alpha = \frac{d\omega}{dt} = \dot{\theta} \]

\[v = r \omega \quad \text{Sentripetalaksel.} \quad a_r = -\omega^2 r = -\omega^2 r \quad \text{Baneaksel.} \quad a_\theta = \frac{dv}{dt} = r \frac{d\omega}{dt} = r \alpha \]

Kinetisk energi \ \ W_k = \frac{1}{2} I \omega^2 \quad \text{der trehetsmoment} \ I = \sum_i m_i r_i^2 \to \int r^2 dm

Massiv kule: \ \ I_T = \frac{2}{5} MR^2 \quad \text{Ring:} \ I_T = MR^2 \quad \text{Sylinder/skive:} \ I_T = \frac{1}{2} MR^2 \quad \text{Kuleskall:} \ I_T = \frac{2}{3} MR^2

Lang, tynn stav: \ \ I_T = \frac{1}{12} M \ell^2 \quad \text{Parallellakseteoremet:} \ I = I_T + MR^2

Dreieimpuls (rotasjonsmengde) \ \vec{L} = \vec{r} \times \vec{p} \quad \vec{\tau} = \frac{d}{dt} \vec{L} \quad \text{Stive legemer:} \ \vec{\tau} = I \ \vec{\omega} \quad \vec{\tau} = I \ \frac{d\vec{\omega}}{dt}

Hookes lov: \ \ F = -kx \quad T = \frac{F}{A} = E \epsilon = E \frac{\Delta \ell}{\ell} \quad T = \mu r = \mu \frac{\Delta x}{y} \quad \Delta p = -B \frac{\Delta V}{V} \quad \tau = \frac{\pi}{32} \mu \frac{D^4}{\ell^3} \theta

Skjærspenning og viskositet: \ \ T = \frac{F}{A} = \eta \frac{v}{b} \]
Svingninger og bølger:

Udempt svingning: \(\ddot{x} + \omega_0^2 x = 0 \) \(\omega_0 = \sqrt{\frac{k}{m}} \) \(T = \frac{2\pi}{\omega_0} \) \(f_0 = \frac{1}{T} = \frac{\omega_0}{2\pi} \)

\(\dot{\theta} + \omega_0 \sin \theta = 0 \) \(\omega_0 = \sqrt{\frac{mgd}{I}} \) eller \(\omega_0 = \sqrt{\frac{g}{l}} \)

Dempet svingning: \(\ddot{x} + 2\delta \dot{x} + \omega_0^2 x = 0 \) \(\omega_0 = \sqrt{\frac{k}{m}} \) \(\delta = \frac{b}{2m} \)

\(\delta < \omega_0 \) Underkritisk dempet: \(x(t) = A e^{-\delta t} \cos(\omega_d t + \theta_0) \) \(\omega_d = \sqrt{\omega_0^2 - \delta^2} \)

\(\delta > \omega_0 \) Overkritisk dempet: \(x(t) = A^+ e^{-\alpha^+ t} + A^- e^{-\alpha^- t} \) \(\alpha^\pm = \delta \pm \sqrt{\delta^2 - \omega_0^2} \)

\(\ddot{x} + 2\delta \dot{x} + \omega_0^2 x = a_0 \cos \omega t \) når \(t \) er stor: \(x(t) = x_0 \cos(\omega t + \phi) \), der \(x_0(\omega) = \frac{a_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}} \)

Bølger: \(\frac{\partial^2 u}{\partial x^2} - v^2 \frac{\partial^2 u}{\partial t^2} = 0 \) \(y(x,t) = f(x \pm vt) \) \(y(x,t) = y_0 \cos(kx) \cos(\omega t) \) \(y(x,t) = y_0 \cos(kx \pm \omega t) \)

\(v = \frac{\lambda}{k} \) \(|u| = \frac{\omega}{k} \) \(\lambda = \gamma f_k \) \(v_k = \frac{\delta \omega}{\delta k} \) Streng: \(v = \sqrt{\frac{T}{\rho}} = \sqrt{\frac{F}{\mu}} \) hvor \(T = \frac{F}{A} \) og \(\mu = \rho A = \frac{\Delta m}{\Delta l} \)

Lydbølger: \(\xi(x,t) = \xi_0 \cos(kx \pm \omega t) \) \(p_{byd} = k^n \rho \xi_0 \) Luft: \(v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma k_B T}{m}} \) Fast stoff: \(v = \sqrt{\frac{E}{\rho}} \)

\(P = \frac{1}{2} \rho u^2 \gamma_0^2 \) \(I = \frac{P}{A} = \frac{1}{2} \rho v \omega^2 \gamma_0^2 \) \(I = \frac{1}{2} p_{byd}^2 = \frac{1}{2} \rho v^2 \frac{1}{2} \sqrt{\rho B} \)

\(\beta(\text{dB}) = 10 \log_{10} \frac{I}{I_{\text{min}}} \) der \(I_{\text{min}} = 10^{-12} \text{W/m}^2 \)

Stående bølger: \(y(t) = \frac{1}{2} y_0 \cos[kx \pm \omega t] + \frac{1}{2} y_0 \cos[kx \mp \omega t] \) \(L = \frac{\lambda}{2} \) \(f_n = \frac{n v}{2L} \)

Termisk fysikk:

\(n_M \) (iblant også \(n \)) = antall mol \(N \) = antall molekyler \(n = N/V \) \(n_t = \) antall frihetsgrader

\(\alpha = \frac{1}{\ell} \frac{dT}{dt} \) \(\Delta U = Q - W \) \(C = \frac{Q}{\Delta T} = mc = n_M c' = n_{cm} \)

Varmertransport: \(j_Q = \frac{dQ}{dT} = -\frac{\partial T}{\partial x} \) \(j = \sigma T^4 \) \(j_v(\nu, T) = \frac{2\pi h v^3}{c^2} \) \(e^{h v/k_BT} - 1 \)

\(pV = n_M RT \) \(pV = N \frac{2}{3} E \) \(E = \frac{1}{2} \mu v^2 \) van der Waals: \((p + \frac{\alpha}{\nu_m})(v_m - b) = RT \)

\(c'_V = \frac{1}{2} n_t R \) \(c'_V = \frac{1}{2} (n_t + 2) R = c'_V + R \) \(\Delta W = p \Delta V \) \(W = \int_1^2 \rho dV \) \(dU = C_V \cdot dT \)

\(\gamma = C_p \) \(C_V \) \(n_t + 2 \) \(\rho V^\gamma = \text{konstant} \) \(TV^{\gamma-1} = \text{konstant} \) \(p^{1-\gamma} T^{\gamma} = \text{konstant} \) \(\nu_{byd} = \sqrt{\frac{\gamma k_B T}{m}} \)

Molekylsære kollisjoner: \(\sigma = \pi d^2 \) \(\kappa_0 = \frac{1}{n_{so}} \) \(\tau = \frac{1}{n_{so}} \)

Effektivitet (virkningsgrad/kjølefaktor): \(\epsilon = \frac{W}{Q_H} \) \(\epsilon = 1 - \frac{T_L}{T_H} \) Otto: \(\epsilon = 1 - \frac{1}{r_{\gamma-1}} \)

\(K = \left| Q_L \right| \frac{Q_H}{T_L} \) \(\frac{Q_H}{T_H} = \frac{T_L}{T_H} \) \(\epsilon = \left| \frac{Q_H}{W} \right| \frac{Q_H}{T_H} \) \(\frac{T_H}{T_H - T_L} \) \(\text{Clausius: } \sum \frac{\Delta Q}{T} \leq 0 \) \(\int \frac{dQ}{T} \leq 0 \)

Entropi: \(dS = \frac{dQ}{T} \) \(\Delta S_{12} = S_2 - S_1 = \int_1^2 \frac{dQ}{T} \) \(S = k_B \ln w \)