Problem 1

a) Taking the differentials, we obtain

\[
\begin{align*}
\frac{dt'}{dt} &= \gamma (dt - \frac{v}{c^2} dx) \\
&= \gamma dt \left(1 - \frac{vV_x}{c^2}\right), \\
\frac{dV_x'}{dx} &= \frac{dV_x}{1 - \frac{vV_x}{c^2}} + \frac{V_x - v}{(1 - \frac{vV_x}{c^2})^2} \frac{v}{c^2} dV_x.
\end{align*}
\]

(1)

(2)

Dividing Eq. (2) by Eq. (1), we obtain

\[
\begin{align*}
a'_x &= \frac{1}{\gamma} \frac{a_x}{(1 - \frac{vV_x}{c^2})^2} + \frac{1}{\gamma} \frac{V_x - v}{(1 - \frac{vV_x}{c^2})^3} c^2 \frac{v}{c^2} a_x.
\end{align*}
\]

(3)
If \(S' \) is the instantaneous rest frame, we have \(v = V_x \) and Eq. (3) reduces to

\[
a'_x = \gamma^3 a_x ,
\]

where we have used that \(1 - \frac{V_x^2}{c^2} = 1 - \frac{V^2}{c^2} = \frac{1}{\gamma^2} \).

b) Since \(a'_x = g \), Eq. (4) can be written as

\[
\frac{dV_x}{dt} = g \left(1 - \frac{V_x^2}{c^2} \right)^{\frac{3}{2}} .
\]

or

\[
\frac{dV_x}{\left(1 - \frac{V_x^2}{c^2} \right)^{\frac{3}{2}}} = gdt .
\]

Changing variables, \(V_x = c \sin u \), we obtain

\[
\frac{cdu}{\cos^2 u} = gdt .
\]

Integrating yields

\[
c \tan u = gt + C ,
\]

where \(C \) is an integration constant.

\[
\frac{V_x}{\sqrt{1 - \frac{V_x^2}{c^2}}} = gt + C .
\]

Solving with respect to \(V_x \), this finally yields

\[
V_x(t) = \frac{gt + C}{\sqrt{1 + (gt + C)^2/c^2}} .
\]

\(C = 0 \) since \(V_x(0) = 0 \). Thus

\[
V_x(t) = \frac{gt}{\sqrt{1 + \frac{g^2t^2}{c^2}}} .
\]

The limiting velocity is \(V_{\text{lim}} = \frac{c}{\gamma} \) as seen from Eq. (11).
c) We have
\[
\frac{d\tau}{dt} = \frac{1}{\gamma} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 + \frac{g^2t^2}{c^2}}}
\] (12)

Changing variables \(t = \frac{c}{g} \sinh u \), we can write
\[
d\tau = \frac{c}{g} du.
\] (13)

Integration yields
\[
\tau = \frac{c}{g} \int_0^u du + C = \frac{c}{g} u + C = \frac{c}{g} \sinh^{-1}(\frac{g}{c} t) + K,
\] (14)

where \(K \) is an integration constant. \(K = 0 \) since \(\tau(0) = 0 \). This yields
\[
t(\tau) = \frac{c}{g} \sinh(\frac{g}{c} \tau).
\] (15)

d) Integrating Eq. (11), we find
\[
x(t) = \frac{c^2}{g} \left[\sqrt{1 + \frac{g^2t^2}{c^2}} - 1 \right],
\] (16)

where we have used that \(x(\tau = 0) = x(t = 0) = 0 \). Substituting Eq. (15) into Eq. (16), we finally obtain
\[
x(\tau) = \frac{c^2}{g} \left[\cosh(\frac{g}{c} \tau) - 1 \right],
\] (17)

e) Taking the differentials of \(t \) and \(x \) yields
\[
dt = \frac{1}{c} \sinh \left(\frac{gt'}{c}\right) dx' + \left(\frac{c}{g} + \frac{x'}{c}\right) \cosh \left(\frac{gt'}{c}\right) \frac{g}{c} dt',
\] (18)
\[
dx = \cosh \left(\frac{gt'}{c}\right) dx' + \left(\frac{c}{g} + \frac{x'}{c}\right) \sinh \left(\frac{gt'}{c}\right) \frac{g}{c} dt'.
\] (19)
Inserting these expressions into the line element and using $dy = dy'$ and $dz = dz'$, we find

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

$$= -c^2 dt'^2 \left(1 + \frac{gx'}{c^2}\right)^2 + dx'^2 + dy'^2 + dz'^2,$$

$$= -c^2 dt'^2 \left(1 + \frac{gx'}{c^2}\right)^2 + dx'^2 + dy'^2 + dz'^2,$$

(20)

f) Since the line element is independent of time, the vector $\xi = (1, 0, 0, 0)$ is a Killing vector. The quantity $\xi \cdot p$ is a conserved quantity along a geodesic.

g) A stationary observer with spatial coordinates $(h, 0, 0)$ has four-velocity vector

$$u = \left(\left(1 + \frac{gx'}{c^2}\right)^{-1}, 0, 0, 0\right)$$

$$= \left(1 + \frac{gx'}{c^2}\right)^{-1} \xi.$$ (21)

The energy of a photon with four-momentum p and frequency ω is $\hbar \omega = -p \cdot u_{\text{obs}}$. This yields

$$\hbar \omega = -\left(1 + \frac{gx'}{c^2}\right)^{-1} \xi \cdot p.$$ (22)

or

$$\hbar \omega \left(1 + \frac{gx'}{c^2}\right) = -\xi \cdot p.$$ (23)

The energy of a photon emitted at $x' = h$ is denoted by $\hbar \omega_h$ and the energy of the same photon absorbed at $x' = h$ is denoted by $\hbar \omega_0$. Eq. (23) then gives

$$\omega_0 = \omega_h \left(1 + \frac{gh}{c^2}\right),$$ (24)

since $\xi \cdot p$ is constant along the photon’s geodesic.

According to the equivalence principle acceleration is equivalent to a gravitational field. The blueshift of the photon is an example of this principle.
Problem 2

(a) Subtracting one-third of the first Friedman equation from the second Friedman equation gives

\[\ddot{a} = -\frac{4\pi}{3} a \rho_m + \frac{1}{3} a \Lambda. \] \hspace{1cm} (25)

where we have used that the pressure \(p \) vanishes.

(b) For a time-independent solution, we have \(\dot{a} = \ddot{a} = 0 \). Equation (25), then yields

\[\rho_m^e = \frac{\Lambda}{4\pi}. \] \hspace{1cm} (26)

For a static solution the first Friedman equation reduces to

\[3 \frac{1}{a_c^2} = 8\pi \rho_m^e + \Lambda, \] \hspace{1cm} (27)

or

\[a_c = \frac{1}{\sqrt{\Lambda}}. \] \hspace{1cm} (28)

c) We write \(a = a_c + \delta a \). Note that \(\dot{a} = \frac{d}{dt} \delta a \) and \(\ddot{a} = \frac{d^2}{dt^2} \delta a \) since \(a_c \) is constant in time. For \(p = 0 \), the second Friedman equation can be rewritten as

\[2a \ddot{a} + \dot{a}^2 + 1 = \Lambda a^2. \] \hspace{1cm} (29)

To first order in the perturbation, Eq. (29) reads

\[2a \frac{d^2}{dt^2} \delta a + 1 = \Lambda (a_c^2 + 2a_c \delta a). \] \hspace{1cm} (30)

Using the result for \(a_c \), we find

\[\frac{d^2}{dt^2} \delta a = \frac{\Lambda}{\delta a}, \] \hspace{1cm} (31)

which corresponds to \(B = \Lambda \). This is a second-order differential equation for \(\delta a \), whose solution is

\[\delta a = A_1 e^{\sqrt{\Lambda} t} + A_2 e^{-\sqrt{\Lambda} t}, \] \hspace{1cm} (32)

where \(A_1 \) and \(A_2 \) are constants. The perturbation is growing and so the static Einstein universe is unstable. It is the sign of \(B \) that determines the stability of the solution. For \(B < 0 \), the solution for \(\delta a \) would involve trigonometric functions and so the universe would oscillate around the equilibrium solution.