a) Hastigheten til observatøren i labsystemet er

\[V = \omega R. \]

La tida \(\Delta t \) for ein rotasjon er

\[\Delta t = \frac{2\pi}{\omega}. \]

Samanhengen mellom labtid og eigentid er som vanleg

\[\Delta \tau = \frac{2\pi}{\omega} \sqrt{1 - \frac{\omega^2 R^2}{r^2}}. \]

b) Vi har

\[\gamma_{\theta\theta} = g_{\theta\theta} - g_{\theta t} g_{t\theta} \]

\[= r^2 + \frac{r^4 \omega^2}{1 - \omega^2 r^2} \]

\[= \frac{r^2}{1 - \omega^2 r^2}. \]

Vidare er

\[\gamma_{r r} = g_{r r} - g_{r t} g_{t r} \]

\[= \frac{1}{\omega^2 r^2}. \]

\[\gamma_{r \theta} = g_{r \theta} \]

\[= \frac{g_{\theta r} - \omega^2 g_{r r}}{g_{t u}} \]

\[= 0. \]

Innsett får ein då

\[d\Sigma^2 = dr^2 + \frac{r^2}{1 - \omega^2 r^2} d\theta^2. \]
Plateelementet er gitt ved
\[dA = \sqrt{\gamma_{rr}\gamma_{\theta\theta}} \, dr \, d\theta \]
\[= \frac{r \, dr \, d\theta}{\sqrt{1 - \omega^2 r^2}}. \]

Arealet til skiva blir da
\[A = \int_0^R \int_0^{2\pi} \frac{r \, dr \, d\theta}{\sqrt{1 - \omega^2 r^2}} \]
\[= -\frac{2\pi}{\omega^2} \left[\sqrt{1 - \omega^2 r^2} \right]_0^R \]
\[= \frac{2\pi}{\omega^2} \left(1 - \sqrt{1 - \omega^2 R^2} \right). \]

Nei, geometriem er ikkje euklidsk. Arealet til skiva er ikkje lik \(\pi R^2 \) når \(\omega \neq 0 \). Dersom ein let \(\omega \to 0 \) i formelen ovanfor får ein sjølsagt \(A = \pi R^2 \).

c) I labsystemet har vi (transvers) Doppler effekt fordi kjelda beveger seg i forhold til kvarandre. Samanhengen mellom \(\omega_R \) og \(\omega_0 \) er
\[\omega_0 = \frac{\omega_R \sqrt{1 - V^2}}{1 - V \cos \alpha}, \]
der \(V = \) hastigheiten til kjelda og \(\alpha \) er vinkelen mellom retninga til fotonet og retninga til kjelda. I oppgava er \(V = \omega R \) og \(\alpha = \pi/2 \). Dett gjev
\[\omega_0 = \frac{\omega_R}{\sqrt{1 - \omega^2 R^2}}. \]

Alternativ løysing: Metrikken er tidsuavhengig og \(\xi = (1,0,0) \) er difor ein Killing vektor. Ein stasjonær observatør har 4-hastighet \(u_{obs} = (1 - \omega^2 r^2)^{-1/2} \xi \). Vi veit at
\[p \cdot \xi = \text{konstant}, \]
langs verdslinja for eit foton. Vidare har vi at energien \(E \) til eit foton er gitt ved
\[E = -p \cdot u_{obs} \]
\[= p \cdot (1 - \omega^2 r^2)^{-1/2} \xi \]
\[= \text{konstant} \ (1 - \omega^2 r^2)^{-1/2}. \]

Energien til fotonet er gitt ved \(h\omega(r) \), der argumentet indikerer at energien er ein funksjon av radien \(r \). Dette gjev
\[h\omega(r) \sqrt{1 - \omega^2 r^2} = \text{konstant}. \]
Dersom ein evaluerer dette uttrykket for $r = 0$ og $r = R$, får vi

$$\omega_0 = \sqrt{1 - \omega^2 R^2 \omega_R}.$$

Ein observatør i ro i labsystemet tolkar rundforskyvninga som *transvers Doppler effekt* i spesiell relativitetsteori. Ifølgje ekvivalensprinsippet er akselerasjon det ekvivalent med gravitasjonsfelt. Ein observatør i ro i det akselererte referansesystemet vil difor tolke det som *gravitasjonell rundforskyvning*. Dei to observatørane er i same punkt, men refererer til ulike koordinatsystem og difor er tolkninga ulik.

Oppgave 2

a) $a(t)$ er skalafaktoren. Avstanden mellom to galaksar (som har konstante medfølgande koordinatar) er proporsjonal med $a(t)$. Λ er den kosmologiske konstanten, ρ er energitettleiken til stråling og materie. p er strålingstrykket (trykket til vanleg materie er tilnærma lik null). $k = 0$ tilsvarer topologien til euklidsk rom. $k = 1$ er topologien til ei tredimensjonal kule (S^3) i \mathbb{R}^4. $k = -1$ er topologien til ein tredimensjonal hyperboloide i eit firedimensjonalt flatt tidrom.

b) Vi prøver med $a = \text{konst}$ i den andre av Friedmans likningar. Dette gjev

$$\frac{1}{a^2} = \Lambda,$$

eller

$$a = \frac{1}{\sqrt{\Lambda}}.$$

Den første av Friedmans likningar kan da skrivast

$$\rho_m = \frac{1}{8\pi} \left[\frac{1}{a^2} - \Lambda \right].$$

Ved innsetting for a får vi

$$\rho_M = \frac{\Lambda}{4\pi}.$$

c) Kombinasjon av Friedmans likningar gjev

$$-6\frac{\ddot{a}}{a} = 8\pi \rho - 2\Lambda$$

$$= 8\pi \delta \rho.$$

Vi skriv

$$a = \frac{1}{\sqrt{\Lambda}} + \delta a,$$
der δa er avviket fra $1/\sqrt{\Lambda}$. Tidsderivasjon ein og to gangar gjev
\[
\ddot{a} = \delta \dot{a}, \\
\dddot{a} = \delta \ddot{a}.
\]

Til første orden får vi
\[
\delta \ddot{a} = -\frac{4\pi}{3\sqrt{\Lambda}} \delta \rho.
\]
Viss $\delta \rho > 0$, vil a minke og vice versa. Altså er universet ustabil.

Oppgave 3

a) r er ein romlik koordinat for $r < R$ og ein tidlik koordinat for $r > R$. t er ein romlik koordinat for $r > R$ og ein tidlik koordinat for $r < R$. Dette tyder at t og r bytta rolle. For $r < R$ aukar t. Dersom Jens passerer $r = R$, må r anten auke eller minke sidan r er ein tidlik koordinat. Kontinuitet impliserer at r må auke og Jens kan aldri vende tilbake til $r = R/2$. Dette er analogt til det som skjer dersom ein passerer Schwarschildradien $r = 2m$ til eit svart hole.

b) Differensialalet blir
\[
dt = dv + \frac{dr}{1 - \frac{r^2}{R^2}}.
\]
Innsett i metrikken, får vi
\[
\frac{ds^2}{\sqrt{1 - \frac{r^2}{R^2}}} = dv^2 - 2dvdr + r^2d\Omega^2.
\]
c) $ds^2 = 0$ gjev fleire løysingar. Ein løysing er
\[
v = 0.
\]
Dette tilsvarer
\[
v = \textit{konstant}.
\]
Dette svarer til rette linjer: $\ddot{t} = v + r = C + r$. Den andre løysinga er gitt ved
\[
\frac{dv}{dr} = -\frac{2}{1 - \frac{r^2}{R^2}}.
\]
Integrasjon gjev da
\[
v = -R \ln \left| 1 + \frac{r}{R} \right| + R \ln \left| 1 - \frac{r}{R} \right| + C,
\]
(1)
der C er ein integrasjonskonstant.
Oppgave 4

a) Ei gruppe er abelsk viss alle element i gruppa kommerer, $ab = ba$ for alle $a, b \in G$. $SO(3)$ er gruppa av rotasjonar i tre dimensjonar. Det er opplagt at to rotasjonar om to ulike aksar ikkje alltid kommerer. Altså er $SO(3)$ ikkje abelsk. $SU(2)$ har tre generatorar - Pauli-matrisene.

b) Sidan α er ein konstant, kommerer fasefaktoren med derivasjonoperatoren og γ-matrisen. Fasefaktoren $e^{i\alpha}$ frå ψ kansellerer da fasefaktoren $e^{-i\alpha}$ frå ψ^\dagger. Altså er det første leddet invariant. Tilsvarande for det andre leddet. Rekkeutvikling av global fasetransformasjon til første orden i α gjev

\[
\Delta \psi = i\alpha \psi \\
\Delta \psi^\dagger = -i\alpha \psi^\dagger.
\]

I tillegg har vi

\[
\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} = \bar{\psi} \gamma^\mu.
\]

Firerstraumen blir da

\[
j^\mu = \bar{\psi} \gamma^\mu \psi,
\]

der vi har droppa prefaktoren $i\alpha$.

For at Lagrangenfunksjonen skal vere invariant under lokale fasetransformasjonar, må vi innføre
eit gaugefelt A_μ og erstatte partiel deriverte med kovariant deriverte. I tillegg må vi ta med et Maxwell-ledd for A_μ. Vi får da

$$\mathcal{L} = \bar{\psi} \gamma^\mu (\partial_\mu - i A_\mu \psi) - m \bar{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

der $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ er den elektromagnetiske feltensoren.

Sidan γ_5 antikommuterer med γ_μ, får vi $e^{i\alpha \gamma_5} \gamma_\mu = \gamma_\mu e^{-i\alpha \gamma_5}$. Dette gjev

$$\mathcal{L} \to \mathcal{L}' = \bar{\psi}^i e^{-i\alpha \gamma_5} \gamma_0 \gamma_\mu \partial_\mu e^{i\beta \gamma_5} \alpha \psi - m \bar{\psi}^i e^{-i\alpha \gamma_5} \gamma_0 \gamma_5 \alpha \psi.$$

Det er altså berre for $m = 0$ at \mathcal{L} er invariant.

c) Transformasjonsformlane er

$$t' = \gamma(t - vx),$$
$$x' = \gamma(x - vt),$$
$$y' = y,$$
$$z' = z,$$

der $\gamma = 1/\sqrt{1-v^2}$. Dette gjev

$$dx' = \gamma(dx - vdt),$$
$$dt' = \gamma(dt - vdx).$$

Ved divisjon får vi

$$Vx' = \frac{dx'}{dt'} = \frac{dx - vdt}{dt - vdx} = \frac{Vx - v}{1 - vVx}.$$}

Dersom $Vx = 1$, er $Vx' = 1$.

6