Exam FY3452 Gravitation and Cosmology Spring 2016

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Telefon: 73593131

Tuesday May 31 2016
09.00-13.00

Permitted examination support material:
Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett & Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler

The problem set consists of four pages. Read carefully. Good luck! Bonne chance! Viel Glück! Lykke til! In the problems, we use \(c = G = 1 \).

Problem 1

a) Consider two inertial frames \(S \) and \(S' \), where \(S' \) moves along the \(x \)-axis with velocity \(v \). Write down the transformation that expresses \(t' \), \(x' \), \(y' \), and \(z' \) as functions of \(t \), \(x \), \(y \), and \(z \).

A disc of radius \(r \) is rotating counterclockwise with angular speed \(\beta \). Its center is located at the origin in the \(xy \)-plane. A light source on the edge of the disc is emitting radiation at a frequency \(\omega' \) in the rest frame of the source. When the source crosses the \(y \)-axis in the lower half-plane, it emits radiation in the \(y' \) direction, where \(S' \) denotes the instantaneous rest frame.
b) Find the frequency ω and the components of the wavevector k in the lab frame S in terms of the corresponding quantities ω' and k' in S'.

c) Find the speed $v = \beta r$ such that the angle between the radiation and x-axis in S is $\frac{1}{4}\pi$.

Problem 2

Consider a two-dimensional space with the line element
\[ds^2 = dr^2 + f(r)d\phi^2, \quad (1) \]
where r and ϕ are coordinates with range $0 \leq r < \infty$ and $0 \leq \phi \leq 2\pi$, and $f(r)$ is a smooth real function.

a) The only nonzero Christoffel symbols are $\Gamma^r_{\phi\phi}$ and $\Gamma^\phi_{r\phi} = \Gamma^\phi_{\phi r}$. Calculate the nonzero Christoffel symbols.

b) The only nonzero components of the Ricci tensor are R_{rr} and $R_{\phi\phi}$. Calculate the nonzero components of the Ricci tensor.

c) Use this to show that the Ricci scalar R can be written as
\[R = \frac{1}{2} \frac{[f'(r)]^2}{f^2(r)} - \frac{f''(r)}{f(r)}. \quad (2) \]

d) Finally assume that $f(r)$ is of the form
\[f(r) = r^n, \quad (3) \]
where n is nonnegative integer. For which values of n is the space flat? For which values is the space Euclidean?

Problem 3

In this problem, we are going to study some of the properties of an electrically charge and spherically symmetric black hole. The metric was found by Reissner and Nordstrom and reads
\[ds^2 = -\left(1 - \frac{2m}{r} + \frac{\varepsilon^2}{r^2}\right)dt^2 + \left(1 - \frac{2m}{r} + \frac{\varepsilon^2}{r^2}\right)^{-1} dr^2 + r^2d\Omega^2, \quad (4) \]
where \(m \) is the mass and \(Q = \varepsilon^2 \) is the electric charge of the black hole.

a) \(r = 0 \) is a coordinate singularity (and a physical one as well). Show that the other coordinate singularities are given by

\[
r_{\pm} = m \pm \sqrt{m^2 - \varepsilon^2}.
\]

We can use \(r_{\pm} \) to divide \(r \) into the three different regions according to

\[
I : 0 < r < r_-, \\
II : r_- < r < r_+, \\
III : r_+ < r.
\]

b) Using a clever coordinate transformation, the line element can be written in the form

\[
ds^2 = -(1 - f) dt^2 + 2f dt dr + (1 + f) dr^2 + r^2 d\Omega^2,
\]

where \(f = \frac{2m}{r} - \varepsilon^2 \). Show that a family of radial null geodesics are given by

\[
\vec{t} + r = \text{constant}.
\]

Is this family of geodesics incoming or outgoing? Draw the geodesics in an \((\vec{t}, r)\)-diagram.

c) Show that there is another family of radial null geodesics given by

\[
\frac{d\vec{t}}{dr} = \frac{1 + f}{1 - f}.
\]

Fig. 1 shows \(1 - f \) and \(1 + f \) as functions of \(r \). Use this to sketch the geodesics that are the solutions to Eq. (9) in a \((\vec{t}, r)\)-diagram.

![Figure 1: Plot of \(1 + f \) and \(1 - f \) as functions of \(r \). The zeros of \(1 - f \) are at \(r_{\pm} \).](image-url)
d) Show or explain that $r = r_+$ is an event horizon.

e) Once the particle is in region I, is it bound to fall into the singularity at $r = 0$?

f) We finally specialize to the case where $\varepsilon^2 = \frac{3}{4}m^2$. What are the corresponding values of r_+ and r_-? Calculate the proper time $\Delta \tau$ it takes for a particle to travel from r_+ to r_- starting at rest.

Useful formulas

\[
g_{\alpha\delta} \Gamma^\delta_{\beta\gamma} = \frac{1}{2} \left[\frac{\partial g_{\alpha\beta}}{\partial x^\gamma} + \frac{\partial g_{\alpha\gamma}}{\partial x^\beta} - \frac{\partial g_{\beta\gamma}}{\partial x^\alpha} \right], \quad (10)
\]

\[
R_{\alpha\beta} = \partial_\sigma \Gamma^\sigma_{\alpha\beta} - \partial_\beta \Gamma^\gamma_{\alpha\gamma} + \Gamma^\gamma_{\alpha\delta} \Gamma^\delta_{\beta\gamma} - \Gamma^\delta_{\beta\gamma} \Gamma^\gamma_{\alpha\delta}, \quad (11)
\]

\[
R = g^{\alpha\beta} R_{\alpha\beta}. \quad (12)
\]