Exam FY3452 Gravitation and Cosmology fall 2016

Lecturer: Professor Jens O. Andersen
Department of Physics, NTNU
Phone: 73593131 or 46478747 (mob)

Monday December 12 2016
09.00-13.00

Permitted examination support material:
Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematiscbe Formelsammlung
Barnett & Cronin: Mathematical Formulae
Angell og Lian: Fysiske størrelser og enheter: navn og symboler

The problem set consists of four pages. Read carefully. Good luck! Bonne chance! Viel Glück! Veel succes! Lykke til!

Problem 1

Consider the standard situation where an inertial frame S' moves along the positive x-axis with speed v relative to another inertial frame S.

a) Show the relation between the acceleration a'_x in S' and a_x in S

$$a'_x = \frac{1}{\gamma} \frac{a_x}{(1 - \frac{v}{c^2})^2} + \frac{1}{\gamma} \frac{v}{(1 - \frac{v}{c^2})^3} \frac{va_x}{c^2}$$ \hspace{1cm} (1)

1
Show that if S' is the instantaneous rest frame of a particle moving along the x-axis in S, a_x' reduces to

$$a_x' = \gamma^3 a_x .$$

(2)

b) Assume that the acceleration of the particle moving along the x-axis is constant in its instantaneous rest frame and equal to $a_x' = g$. Show that $V_x(t) = \frac{dx}{dt}$ is

$$\frac{dx}{dt} = \frac{gt}{\sqrt{1 + \frac{g^2 t^2}{c^2}}},$$

(3)

if the initial condition is $V_x(0) = 0$. What is the limiting velocity V_{lim} of $V_x(t)$ as $t \to \infty$?

c) The time t in S can be expressed as a function of the proper time τ of the particle. Show that

$$t(\tau) = \frac{c}{g} \sinh \left(\frac{g}{c} \tau \right),$$

(4)

if the initial condition is $t(0) = 0$.

d) The position x in S can be expressed as a function of the proper time τ of the particle. Show that

$$x(\tau) = \frac{c^2}{g} \left[\cosh \left(\frac{g}{c} \tau \right) - 1 \right],$$

(5)

if the initial condition is $x(0) = 0$.

e) The functions $t(\tau)$ and $x(\tau)$ are the time and position of the origin of S' in S. We next consider an arbitrary point in spacetime, whose coordinates in S' are x' and $t' = \tau$. The coordinates of this point in S are given by

$$t = \left[\frac{c}{g} + \frac{x'}{c} \right] \sinh \left(\frac{g}{c} \tau \right),$$

(6)

$$x = \frac{c^2}{g} \left[\cosh \left(\frac{g}{c} \tau \right) - 1 \right] + x' \cosh \left(\frac{g}{c} \tau \right).$$

(7)

Show that the metric can be written as

$$ds^2 = -c^2 dt'^2 \left(1 + \frac{gx'}{c^2} \right)^2 + dx'^2 + dy'^2 + dz'^2.$$

(8)
f) Explain why \(\xi = (1, 0, 0, 0) \) is a Killing vector and find the associated conserved quantity.

g) Calculate the redshift of a photon that is emitted at \(x' = h \) and absorbed at \(x' = 0 \). Explain the result.

Problem 2

The two Friedman equations are given by

\[\frac{3\dot{a}^2 + k}{a^2} = 8\pi p + \Lambda, \quad (9) \]

\[\frac{2\ddot{a}a + \dot{a}^2 + k}{a^2} = -8\pi p + \Lambda, \quad (10) \]

where \(a(t) \) is the scale factor, \(k = 0, \pm 1 \) is the spatial curvature, \(p \) is the energy density of matter and radiation, \(\rho \) is the pressure, and \(\Lambda > 0 \) is the cosmological constant.

a) In Einstein’s static model for the universe, there is no radiation present \((p = \rho_m) \) and the pressure vanishes. Moreover the spatial curvature is positive, \(k = +1 \). Show that

\[\ddot{a} = -\frac{4\pi}{3} a\rho_m \frac{1}{3} a\Lambda. \quad (11) \]

b) For a given value of \(\Lambda \), there is a critical value of \(\rho_m, \rho_m^c \), such that \(a \) is time independent. Find the value of \(\rho_m^c \) in terms of \(\Lambda \). Find the corresponding value of \(a = a_c \) in terms of \(\Lambda \).

c) We will next study the stability of the static universe. We consider a small perturbation \(\delta \rho_m \) of the density around \(\rho_m^c \) and write \(\rho_m = \rho_m^c + \delta \rho_m \). We can then write \(a = a + \delta a \), where \(\delta a \) is the corresponding change in the scale factor. \(\delta \rho_m \) and \(\delta a \) are time dependent. Use the Friedman equations to show that \(\delta a \) satisfies the second-order differential equation

\[\frac{d^2\delta a}{dt^2} = B\delta a, \quad (12) \]

where \(B \) is a constant. Calculate \(B \). Use this result to determine whether Einstein’s static universe is stable or unstable. (Help: Even if you cannot find \(B \), you can still say something about the stability).
Useful formulas

\[x' = \gamma (x - vt), \] \hspace{1cm} (13)

\[t' = \gamma \left(t - \frac{v}{c^2} x \right), \] \hspace{1cm} (14)

\[V_x' = \frac{V_x - v}{1 - \frac{v}{c^2}}. \] \hspace{1cm} (15)