

Department of Biology

Examination paper for Bi3016 Molecular Cell Biology

Molecular Gen Biology		
Academic contact during examination: Per W Phone: 99369359	/inge	
Examination date: 24 th May 2017		
Examination time (from-to): 09.00-13.00 (four	hours)	
Permitted examination support material: Non	•	
••		
Other information:		
Language: English		
Number of pages (front page excluded): 2	2	
Number of pages enclosed:		
Informasjon om trykking av eksamensoppgave		
Originalen er:		Checked by:
1-sidig X 2-sidig □		
sort/hvit X farger □	Date	Signature
skal ha flervalgskiema □		

Question 1

Genes in eukaryotic cells have complex regulatory mechanisms and many genes display very specific expression, both temporal and spatial.

- a. Describe the most common ways a cell uses to control gene expression and explain the functions of the major players. (70%)
- b. Explain what we mean by transcription circuits, and describe the most common network motifs we find in transcription circuits and how they operate. (30 %)

Question 2

Enzyme coupled receptors are transmembrane proteins that relay a multitude of signals to the cell.

- a. Describe the general structure of a receptor tyrosine kinase (RTK). Explain how they are activated and how they mediate signaling. Use examples from the curriculum in the lecture book. (40 %)
- b. What are the advantages of using scaffold proteins during signaling? (20 %)
- c. Cytokine receptors are crucial for mediating signal from interferons and hormones. Describe the JAK-STAT signaling pathway and explain how the signaling can be turned off. (20 %)
- d. Ethylene is an important plant growth regulator. Explain how ethylene can induce gene expression in plants. (20 %)

Question 3

- a. Describe the various phases of the cell cycle and explain briefly what processes take place during the different stages.
- b. What are the functions of the cyclins Cdks and how are they regulated?
- c. Describe the different stages of the M phase (mitosis and cytokinesis) and explain how the M-Cdk is activated.

Question 4

Cell-cell anchoring junctions play an important role during embryo development, govern the architecture of the body, and determine its shape and strength.

- a. Describe the two types of anchoring cell-cell junctions we find in animal cells.
- b. In mammals cadherins constitute a large and diverse protein family. Describe the structure of a classical cadherin and explain how the mediate cell-cell interactions.
- c. Explain how cadherins can mediate tissue remodeling and describe how they can orchestrate the formation of the neural tube during early vertebrate development.

Question 5

Define / explain 4 of the 5 the following words and terminologies and give a short description of their function, max 200 words.

- a. G-protein coupled receptor (GPCR)
- b. Integrin
- c. Retinoblastoma protein
- d. Egg polarity gene
- e. Morphogen