
 

 

DeepInMotion: Explainable artificial intelligent system to discover 
new infant movement biomarkers for early detection of disease  

Relevance to the call 
The DeepInMotion project will generate new knowledge and techniques in the research area of explainable 

artificial intelligence (XAI) for early detection of motor disabilities in children for clinical decision support. 

The project addresses important challenges for quantitative and accurate diagnosis of motor disabilities, 

providing a basis for planning health care services, improved prevention, and treatment strategies, as well as 

providing a research tool for clinical movement analysis. The new XAI techniques will be integrated in a low-

cost clinical service implementation providing an easy-to-use, low-threshold, and highly available decision 

support system. The DeepInMotion system will ensure healthy lives and promote well-being for all children 

reducing inequality of health care within and among countries (UN sustainable development goal 3 and 10, 

see Figure 1 below). The project will utilize the world largest international database of videos of high-risk 

infants, administrated by St Olavs Hospital in Norway, to develop the new XAI techniques. The explanation 

accuracy, transparency and accountability of the AI-technology will be co-developed by an international 

unique interdisciplinary group of computer scientists, human movement scientists, and specialists within 

paediatric research and physiotherapy including two Hospital clinics in the Central Norway Regional Health 

Authority (St Olavs Hospital and Ålesund Hospital). The project advisory board will contain several 

international medical device manufacturers that will exploit the IP delivered by the present project to meet the 

UN sustainable goals.         

1. Excellence 
1.1 State of the art, knowledge needs and project objectives 

Cerebral palsy (CP) is a movement disorder caused by a perinatal brain injury that results in life-long needs 

for special services and care. Treatment and care for individuals with CP results in a life-time cost of €800 000 

per child, approximately four times that of a typically developing child. The condition also results in severe 

personal challenges for the child and their families [1, 2]. Today, early detection of CP is performed by a 

subjective and a qualitative movement analysis, called the General Movement Assessment (GMA), in infants 

between 12 to 18 weeks post term age [3]. GMA is currently the most accurate method for detection of CP 

before 5 months of age and provide opportunities for early onset of therapies and treatments in the period when 

plasticity of the brain is at its highest [4]. However, GMA need highly qualified clinicians with long experience 

to be reliable and, thus, lack of widespread adoption among clinical teams [4, 5]. GMA is also a qualitative 

method used in an ad hoc and subjective manner without objective identification of diagnostic-specific 

movement biomarkers. Even though quantitative methods have been suggested for early detection of CP, they 

are all based on pre-selected movement features for which the association to the CP outcome are unknown 

and, consequently, lack sufficient accuracy and robustness to be implemented in clinical services [6].   

During the last decade, a large research field within computer science have emerge developing innovative 

machine learning models called deep neural networks (DNN). DNNs can automatically aggregate new features 

from big data sources resulting in super-human performances in complex decision tasks [7]. Thus, DNNs have 

the potential to discovering new movement features that are directly related to the CP outcome. Even though 

DNNs can make complex decisions with high performance, the networks are not self-explainable and does not 

provide the logic behind it’s decisions or automatic aggregated features to the end-user [8]. In movement 

analysis for clinical decision support, the logic behind the automatic aggregation of features within DNNs need 

to be revealed through clinical meaningful explanations for the features to become biomarkers for a diagnosis 

or progression of disease [8]. Even though conventional machine learning models have been suggested for 

early detection of CP [9,10], they are all developed as “black box” models without necessary explanation of 

their decisions to adhere to EU-MDR guidelines for the development of AI-based medical devices [11]. Thus, 

new explainable techniques and architectures need to be developed for DNNs to become a trustworthy, 

transparent, and accountable medical device for clinical decision support. The current project will develop an 

explainable AI-based telemedical system, called DeepInMotion, able to discover new movement biomarkers 

of paramount importance for a feasible CP detection and treatment guidance tools. The discovering and 

verification of new movement biomarkers will lead to a deeper understanding of neurophysiological 

development of CP and other motor disabilities during childhood.  
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The main objective of the project is to develop the DeepInMotion system and clinical service implementation 

to discover movement biomarkers for early detection of CP in infants (see Figure 1 and 2 below). 

 

Figure 1: The DeepInMotion clinical service implementation. Eva Johnsen gives birth to her first child, Adam, after 27 weeks of 

pregnancy. Adam has a small brain hemorrhage during the neonatal period. After discharge from hospital Adam has follow-up 

scheduled at the hospital follow-up clinic at 6- and 12-months post-term age. Due to the increased risk of motor disability related to 

preterm birth and the brain hemorrhage, his parents are informed at time of discharge that they will have the opportunity to do detection 

of CP and severity of disease when Adam is 12-18 weeks post term age. The hospital provides them with an InMotion smart phone 

app (A and B) to use at home to take a 5 minutes video recording of Adam while he is placed supine moving spontaneously (B and C). 

When Adam reaches 13 weeks post-term age, the InMotion smart phone app reminds Eva (B) to perform the video recording following 

developed standards [12] and upload it to the hospital. An assessment of CP risk and severity of disease is performed based on the 

DeepInMotion system (see Figure 2 below) by the follow-up clinic (D). The clinical dashboard of DeepInMotion shows that Adam has 

a high proportion of risk-related movements (i.e., biomarkers) identified by DeepInMotion and, thus, a high risk of CP with symptoms 

indicating that Adam will not be able to walk independently without a mobility device (D). The results from the DeepInMotion system 

is communicated to the pediatrician/physiotherapist with guidelines for clinical actions (E). Simultaneously, Eva receives a message 

on her InMotion smart phone app that Adams’ risk assessment is completed together with an appointment at the follow-up clinic. 

During that appointment Eva, the local physiotherapist, and the pediatrician at the hospital follow-up clinic discuss the implications of 

the results from the DeepInMotion system for Adam and the family, and a special early intervention program for Adam is initiated. 

Due to the early targeted intervention program for the gait dysfunctions, Adam can optimize level of activity without a mobility device 

and increase social contact with friends and family. 

  

Figure 2: The DeepInMotion system will contain four components: 1) A DNN for infant motion tracker of an input video will identify 

and track the position of the infant joint centers and body landmarks [13]. 2) A DNN for movement feature extraction and CP-detection 

will obtain a risk score for development of CP later in childhood. However, the DNN does not provide any explanation for the obtained 

decision (i.e., decision score). 3) An explainable module with a biomarker detector and reconstructor will provide a decision score (see 

color code) to each infant joint center for each frame in the input video providing an explanation of the DNN’s decision to the end-

users. The joint center positions/velocities are perturbed in multiple infant movement simulation (i.e., feature perturbation) to find the 

confidence range of the DNN’s decision score. 4) A structured knowledge domain will contain a register of established biomarkers 

with explanations from a large multi-site GMA data base containing more than 1400 videos of high-risk infants around the globe 

(Norway, India, Belgium, China, Turkey, US, UK). The large multi-site GMA data base also contain register of severity of CP, CP-

subtype, other motor disabilities, and neurophysiological correlates obtained by neuroimaging. The individual decision with biomarkers 

and explanation will be compared to information contained in the knowledge domain to establish the decision knowledge limit of 

DeepInMotion which is a part of a meaningful explanation to the end-user. The increase in size and content of the knowledge domain 

will drive system retraining and learning making DeepInMotion an adaptive and autonomous AI devices for clinical decision support. 

A written consent is provided by the infant’s parents for the use of the image in this figure.    

 

1.2 Research aims and hypotheses, theoretical approach and methodology 

The project will have the following three work packages (WPs) with related hypothesis, tasks, deliverables, 

and milestones (see Figure below and GANTT chart in Section 3 for timelines). 
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WP 1: Discovering new biomarkers of infant movements for early detection of CP 

Hypothesis 1.1: The DeepInMotion will detect CP with improved accuracy compared state-of the-art GMA 

and neonatal imaging [3].  

Hypothesis 1.2: The movement features automatically identified by the DeepInMotion provides robust and 

explainable biomarkers for early detection of CP.    

Task 1.1 Consensus for clinical meaningful explanations of DNNs: A Delphi consensus study for 

definitions of relevant criteria for meaningful explanations and knowledge limits of DNNs will be conducted 

[8]. These criteria will consider different aspects of DNNs explanations including user benefit, societal 

acceptance, compliance with laws and regulations of medical devices, and system development [8, 11, 14]. 

The criteria will also consider the time requirement and level of detail of the explanations for different end-

users of the DNNs. These criteria will be used to design the explainable module (see Box 3 in Fig. 2 above 

and Task 1.3 below) in the DeepInMotion system and the clinical dashboard of it’s service implementation 

(see Fig. 1D above and Task 2.3 in WP2). 

Task 1.2 Development of movement feature extractor: The joint centre displacements in the video of the 

infant spontaneous movements will be assessed by our newly developed state-of-the-art infant motion tracker 

[13] (see Box 1 in Fig. 2 above). The infant’s joint centres and segments will be nodes and edges, respectively, 

in a graph of the infant’s skeletal compositions. This sequence of graphs will be the input of a graph 

convolutional neural network (GCN) developed through a systematic architectural search based on current 

state-of-the-art GCNs baseline [15] (see Box 2 in Fig. 2 above). The GCN will be developed using the multi-

site GMA database and the deep learning cluster at the Department of Computer Science at NTNU. The 

database will be divided into a training, validation, and test set. The model with the highest performance on 

the validation set of the database will be externally validated on the test set and compared with the performance 

of GMA and neonatal imaging [3] by comparison of sensitivity, specificity, positive and negative predictive 

value, and area under ROC curve (Hypothesis 1.1). The automatic aggregation of movement features within 

the GCN will be the input of the explainable module in Task 1.3 and Task 1.4 below to verify that these 

movement features is biomarkers for early detection of CP. 

Task 1.3 Development of explainable module for verification of new biomarkers: The explainable module 

will consist of two components (see Box 3 in Fig. 1 above); 1a) a movement biomarker detector will assigning 

a decision score for each infant’s joint centre for each video frame that will localize of the CP-risk related 

movements. Modifications of localization methods, like gradient class activation mapping, shapley additive 

explanations, and testing with concept activation vectors, will be developed and compared to evaluate the 

localization consistency of potential biomarkers [16, 17, 18]. 1b) Perturbation-based detectors will induce 

small random perturbation of the infant’s joint positions and velocities and investigate how these perturbation 

affects the decision score of the localization methods above. The random perturbation will be small joint 

flexion/extension/adduction/abduction in the infant skeletal graph, considering the anatomical constraints of 

infant joint’s range-of-motion, and will work as a simulated input graph to the GCN. A series of simulated 

input will create a confidence interval for the DeepInMotion decision score in terms of joint positions and 

velocities providing a quantitative description of the biomarker. 2) A constructor of the biomarker will 

reconstruct the infant movement kinematics (i.e., joint positions and velocities) of the time periods in the video 

where CP-risk related movements are localized according to 1a) and 1b) above. Decoding of the GCNs feature 

extractor and weighting of the joint centre position and velocities by the decision score will reconstruct the 

kinematics of CP-risk related movements. The reconstructed kinematics will be used as input in a structural 
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causal model providing a statistical significance for the movement kinematics being a new biomarker for early 

detection of CP [19] (Hypothesis 1.2). The criteria obtained in Task 1.1 will be used to design the methods 

within the explainable module and how the results are visualized in a clinical dashboard of the service 

implementation developed in Task 2.3 of WP2 below.   

Task 1.4 Finding diagnosis related correlates of movement biomarkers: The localization of the movement 

decision score in Task 1.3 will be compared with diagnosis related correlates. CP-subtype (unilateral/bilateral) 

will be correlated with the spatial asymmetry in the decision score whereas the temporal frequency of CP-

decision score will be compared with the severity of disease (i.e., general motor function classification scale, 

GMFCS). A specification of Hypothesis 1.2 will be that laterality of the infant movements with CP-decision 

score is related to affected body-side of unilateral CP and less mobility problems (i.e, GMFCS level I-III) and 

more bilateral distributed  infant movements with CP-decision score will be related to more severe non-

ambulatory CP function (i.e., GMFCS level IV and V). 

Task 1.5 Automatic detection of new movement biomarkers: The temporal appearance of the CP-decision 

score in Task 1.3 are used as annotation of the multi-site GMA database for retraining of the GCN to detect 

CP-related biomarkers instead of the CP outcome. The retraining of the GCN will incorporate error correction 

of the clinical end-users and updates of the structured knowledge domain developed in WP2 below.            

Deliverable (D1): DeepInMotion system for discovering new movement biomarkers for early detection of CP 

in high-risk infants. 

Milestones: (M1.1) Criteria of clinical meaningful explanations for the DeepInMotion system. (M1.2) 

Performance test of the optimized version of the GCN for early detection of CP. (M1.3) Verification of the 

explanations of new biomarkers provided by an explainable module. (M1.4) The final version of 

DeepInMotion developed (see GANTT in Section 3.2 below for timelines). 

Delivery risk: There is a potential risk for inferior motion tracking of the infant spontaneous movements in 

the video recordings. To cope with this challenge, previous projects in our group has developed and validated 

an infant motion tracker which outperforms all current human pose estimation methods [13]. This motion 

tracker has also been implemented in an easy-to-use software package ready to be shared with clinical partners. 

There is a potential risk of small sample sizes in the training of the DNN in Task 1.2 and 1.3 even with the 

large multi-site GMA data base. However, in contrast to conventional statistical prediction models, the DNNs 

will use pretrained back-ends of large data base of general human movements (i.e., transfer learning) and data 

augmentation which will make the DNN in Task 1.2 and 1.3 more robust even for small sample sizes. There 

is also a potential risk of delivering inferior performing DNN models in Task 1.2 and 1.3. The PI of the project 

has developed and validated a preliminary machine learning model detecting CP within a large cohort of high-

risk infants with 92% sensitivity and 81% specificity which is comparable to expert human decisions [10]. 

However, the model does not provide meaningful explanation for its’ decisions to end-users and, thus, is 

currently unsuitable as a medical device in a clinical service implementation. Nevertheless, the results indicate 

that the video data contains the information necessary for a highly precise detection of CP by the 

DeepInMotion. Thus, WP1 is a “low risk and high gain” part of the project.  

WP 2: Providing meaningful explanation to the clinical end-users and stakeholders 

Hypothesis 2.1: DeepInMotion clinical service implementation will provide meaningful and accurate 

explanations of its decisions to the clinical end-users and stakeholders. 

Hypothesis 2.2: The learning procedure of DeepInMotion will be conform with future effective and secure 

EU-MDR framework for adaptive and autonomous AI devices for clinical decision support. 

Task 2.1 Development of a structured knowledge domain: A structured knowledge domain will be 

developed with four elements: 1) Multi-site GMA data base of annotated video recordings of the infant 

spontaneous movements. The video recordings will be annotated according to known motor phenotypes of 

clinical GMA like fidgety, monotonous, stiff, cramped, and synchronized infant movements [20] and new 

phenotypes (i.e. movement biomarkers) discovered by the DeepInMotion system. 2) A case-based reasoning 

system (i.e., k-nearest neighbours) comparing the individual infant movement features with all infant motor 

phenotypes contained in the Multi-site GMA database. The system will provide an overview of all cases with 

similar motor phenotypes as the individual infant. 3) Textual analysis of multi-site GMA database, CP 

registers, electronic patient journals, and clinical literature to provide an evidence-based explanation to each 

of all the motor phenotypes contained in the database. 4) A gateway of potential new knowledge from the 

explainable module designed with a human gatekeeper interface where the clinical end-user can error correct 
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the knowledge input to the GMA database. The structured knowledge domain will communicate the knowledge 

limits of the DeepInMotion’s decisions in the explanations to the clinical end-user making the system more 

trustworthy as a medical device. The elements of the structural knowledge domain will be developed in close 

collaborations with the end-users by the usability focus group in Task 3.1 of WP3 below.              

Task 2.2 Development of automatic and adaptive learning procedure: As the size and content of the 

structure knowledge domain increases, the DeepInMotion system will automatically adapt and improve by 

retraining and learning. The retraining and learning procedure will be developed with four important elements: 

1) A controller network searching for a GCN baseline architecture for optimal performance, computer 

efficiency and explanation accuracy for early detection of CP [21]. 2) An efficient grid search procedure to 

obtain the optimal scaling of depth and width of the GCN baseline architecture to continually match the 

capacity of the GCN with the size and content of the structured knowledge domain [22]. 3) A retraining 

schedule of DeepInMotion initialized according to the change in size and content of the structured knowledge 

domain incorporating 1) and 2) above. 4) An automatic documentation procedure of technical specification 

and performance obtained by 1) and 2) according to EU-MDR guidelines that potentially can be stored directly 

in European database for medical devices (EUDAMED) for use by notified bodies [10, 14]. Task 2.2 will be 

performed in close collaboration with Task 3.3 in WP3 below for the learning procedure of DeepInMotion 

system to become conform with future effective and secure EU-MDR framework for adaptive and autonomous 

AI devices (Hypothesis 2.2). 

Task 2.3 Development of clinical service implementation: The clinical service implementation will be 

developed with three components: 1) A smartphone app for video recording of the infant spontaneous 

movements to be use by health care personnel and infant’s parents. The infant’s parents will also receive 

feedback from the follow-up clinic in the same app (see Fig. 1A). 2) A digital telemedical back-end providing 

a secure transfer and storage of the infant video recording according to the ICT system at St Olavs Hospital. 

3) A clinical dashboard with graphical user interface (GUI) for the clinical end-user at follow-up clinic (see 

Fig. 1D). Component 1) and 2) have already been developed for a reginal study in our group for GMA 

assessment. The development of the clinical dashboard will be done in close collaboration with the 

development of the explainable module (Task 1.3) and the structured knowledge domain (Task 2.1). The 

DeepInMotion clinical service implementation will be developed in close collaboration with the health care 

personnel by a user-centred design with two iterations delivering a low- and high-fidelity version, respectively. 

Each iteration ends with a usability evaluation by a focus group of clinicians (Task 3.1 in WP3 below). 

Deliverable (D2): DeepInMotion clinical service implementation (see Fig. 1 above) 

Milestones: (M2.1) Development of the structured knowledge domain completed. (M2.2) Development of 

DeepInMotion learning procedure completed. (M2.3) High-fidelity version of the clinical service 

implementation of DeepInMotion completed and feasibility tested.  

Delivery risk: The clinical service implementation of the DeepInMotion is a low risk part of the project 

because it will utilize a prototype of a digital service implementation already developed in another project 

(GMA service implementation project, REK ID 62240, DPIA 197) ran by our group. The system development 

of the structural knowledge domain in Task 2.1 will also involve 4-8 master students at Department of 

Computer Science at NTNU during the first two year of the project.  

WP 3:  Clinical service implementation of DeepInMotion as a medical device  

Hypothesis 3.1: The DeepInMotion clinical service implementation is more feasible in specialist health care 

services compared with GMA.     

Hypothesis 3.2: A Declaration of Conformity (DoC) for DeepInMotion as a Medical Device can be 

approved by EU-MDR and local licence authorities of developmental countries. 

Task 3.1 Usability focus group, containing 5 clinicians at St. Olavs Hospital and Ålesund Hospital and 5 

parents (i.e., primary care givers) will participate in qualitative interviews and answer system usability 

questionnaires assessing the usability and user experience of DeepInMotion clinical service implementation. 

The usability of the DeepInMotion will be assessed through two iterations during the life-time of the project 

including the 1) low-fidelity and 2) high-fidelity version of DeepInMotion system and its clincal service 

implementation developed in WP1 and WP2. Three representatives of the focus group will also be members 

of the project advisory board. 
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Task 3.2 Clinical feasibility study will contain two parts: 1) A small system usability study of the final version 

of DeepInMotion clinical service implementation at St Olavs Hospital, Levanger Hospital, and Ålesund 

Hospitals in the Central Norway Regional Health Authority (CNRHA) where 5 physiotherapist and 3 

pediatricians will use DeepInMotion on about 30 videos from high-risk infants in a six-month period. 2) A 

blinded feasibility study to compare the explanation of a) clinical GMA and b) DeepInMotion service 

implementation. Videos from 100 high-risk infants collected in an ongoing digital GMA service 

implementation study in the CNRHA  between 2019 and 2022  (REK ID 62240, DPIA 197) will be used to 

compare the explanation accuracy and meaningfulness of a) and b) assessed by a group of 10 physiotherapists 

and paediatricians using questionnaire (Hypothesis 3.1). The usability and feasibility study will adhere to the 

standards of EU-MDR and be a pilot for preparation of clinical follow-up for DoC (see Task 3.4 below). The 

clinical feasibility study will be included European database for medical devices (EUDAMED) if included in 

the evaluation by EU-MDR notified body. 

Task 3.3 Preparing pre-market technical documentation for DoC: The development and documentation 

of components illustrated in Fig. 2 will follow the audit guidelines for MDR notified body for AI-based medical 

software and EU-MDR 2017/745 [11,14]. A joint GitHub code repository across all WPs will be established 

in the beginning of the project following the audit guidelines and the consensus established in Task 1.1 in 

WP1. The code repository will also contain a list of third-party software dependencies for the algorithms within 

DeepInMotion system (i.e., SOUP in IEC 62304) ready to be filed to the quality management system and 

EUDAMED. The intended use of DeepInMotion system will be fine-tuned and classification according to EU-

MDR and MDCG 2019-11 will be established. The technical documentation will adhere to a full list of medical 

device directives of MDR Annex II that apply to the appropriate classification of DeepInMotion system. An 

auto-documentation procedure for periodic safety update report to EUDAMED will be developed for DNN 

learning and adjustments which adhere to the list of directives for post-market surveillance of the 

DeepInMotion system (see also Task 2.2 in WP2 above). In special cases where the EU-MDR documentations 

do not follow the local directives for licence approval in developmental countries, the documentation will be 

adapted under supervision of the audit guidelines of the local licence authorities.        

Task 3.4 Preparing clinical studies for DoC: A dated list of all standards and common specifications used 

to evaluate DeepInMotion according to EU-MDR will be created. In this list, the general safety and 

performance requirements of MDR Annex I to intended use will be of central importance. Thus, the preparation 

of clinical studies will contain two parts: 1) external validation of the performance of the DeepInMotion for 

early detection of CP and 2) external clinical feasibility tests of a product version of DeepInMotion. Both the 

protocol of the external validation and feasibility studies will follow the ISO 13485 standard needed for quality 

management system of medical devices to ensure compliance with the EU-MDR [23]. Collaboration between 

clinical and medical device manufacturers in advisory board (i.e., industrial partners) will be in accordance to 

these standards and other requirements from the EU-MDR. The industrial partners will exploit the IP of the 

project through license and patents arrange by the NTNU Technological Transfer Office (TTO) and will be 

responsible for a product version of clinical service implementation of DeepInMotion including both the front-

end and back-end illustrated in Fig. 1 and 2 above, respectively. EU-MDR requirements for product 

specifications, unique device identification (UDI), post-market surveillance, product-user guides, etc will be 

responsibilities of the product manufacture and, thus, beyond the scope of the current project. 

Deliverable (D3): Pre-market technical documentation and clinical follow-up preparations of DeepInMotion 

necessary to meet the EU-MDR requirements for a DoC of medical devices. 

Milestones: (M3.1) All technical documentation for DeepInMotion required by EU-MDR is prepared. (M3.2) 

All protocols for clinical-follow up required by EU-MDR is prepared. 

Delivery risk: The performance, explanation accuracy, and knowledge domain of AI-based software as 

medical device (SaMD), like DeepInMotion, will constantly improve during clinical use by system retraining 

and learning. Thus, an MDR for AI-based SaMD requires a new total product lifecycle regulatory approach to 

provide an effective and secure regulatory framework for adaptive and autonomous AI devices. Currently, the 

regulatory for implementing AI systems as medical devices are still under development and there is a risk that 

regulatory framework may change during the project period. To minimize this risk, the project will follow 

preliminary FDA guidelines for developing AI-based SaMD [11] and continuously collaborate with the 

creators of the audit guidelines for EU-MDR notify bodies to be inform on upcoming changes. In addition, the 

documentation procedures developed in Task 2.2 (WP2) and Task 3.3 have a high potential to be effective and 

secure and adhere to future product lifecycle regulatory for AI-based SaMD.  
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Interdisciplinary approach: The present project has a unique interdisciplinary collaboration between 

clinicians, human movement scientists, computer scientists, and medical device manufacturers in all WPs to 

obtain a new concept for clinical movement analysis for improved disease detection and treatment. Clinical 

scientists will evaluate the clinical feasibility of the DeepInMotion system (WP2 and WP3) whereas the 

computer scientists in collaboration with human movement scientists will develop DNNs of movement feature 

extraction, biomarker detection, diagnosis-prediction, and end-user explanation (WP1 and WP2). The 

interdisciplinary approach will be facilitated by a user-centered interative development procedure where results 

of the usability tests of the low-fidelity version of the DeepInMotion (WP2) will be used to improve subsequent 

high-fidelity versions of the system (WP1 and WP2). Two medical device manufacturers (Ascom and 

Distributed Medical) will be members of the project advisory board as industrial partners to exploit project IPs 

and collaborate on the preparation of technical documentation and clinical follow-up necessary to meet the EU 

MDR requirements for a DoC for the DeepInMotion system (WP3). 

Ethical perspectives: The infants’ families will give consent for the video data to be processed by the 

DeepInMotion according to European General Data Protection Regulation (GDPR). A risk and vulnerability 

(ROS) analysis of the project, including data storage, transfer, and implementation, will be performed by 

NTNU. Furthermore, the use of AI on person sensitive data will be in accordance with GDPR and national 

regulation and AI methodology able to re-identify anonymous data will not be used [24]. No sensitive medical 

information will be communicated outside the secured ICT-system (PAS) of St. Olav hospital. Validation-, 

usability-, and feasibility studies that are not approved will be presented to the Regional Committees for 

Medical and Health Research Ethics and documented in EUDAMED as part of the EU-MDR. An essential 

aim of the project is to promote equality in access to health services by developing services with explainable 

AI techniques which can be implemented in high-, mid- and low-resource settings world-wide.  

Gender issues (Recruitment of women, gender balance and gender perspectives): The global multi-site 

GMA database have an equal gender distribution which is important for the validation of the DeepInMotion 

system. The research groups behind the project consist of both genders.  

Use of stakeholders/user knowledge: End-user knowledge on clinical feasibility will be utilized in 

development of DeepInMotion system and its service implementation in WP1 and WP2 (i.e., paediatricians, 

physiotherapists, other health care personnel, and family of the infant/children). The knowledge will be 

obtained in usability focus groups in Task 3.1 in WP3 and through members of the advisory board containing 

both end-users, medical device manufacturers, and creators of audit guidelines for EU-MDR notified bodies.  

1.3 Novelty and ambition 

The project will develop new knowledge beyond the current state-of-the-art by the creation of DeepInMotion 

system addressing the fundamental challenges in clinical movement analysis and machine learning-based 

disease detection. In WP1, confirmation of Hypothesis 1.1 will provide a paradigm shift in clinical movement 

analysis by the development of the first system ever to automatically extract new movement features which is 

directly related to CP as a diagnostic outcome (Task 1.2). The novel graph convolutional network (GCN) 

architectural design obtained by Task 1.2 and modified and scaled in Task 2.2 will be the first GCN design 

ever to be developed for clinical movement analysis and decision support. The GCN will contain advancements 

in network layer architecture and optimization procedures that will improve precision, computer efficiency, 

and explanation accuracy compared to former state-of-the-art GCN [15]. Confirmation of Hypothesis 1.2 will 

provide each extracted feature by the GCN with a clinical meaningful explanation defining the extracted 

movement features as biomarkers for the diagnostic outcome (Task 1.1, 1.3, 1.4, and 1.5). By the development 

of new algorithms for spatiotemporal localization of GCN decisions and confidence intervals in terms of infant 

joint position and velocities, the explainable module will be the first ever to localize and reconstruct the infant 

movement biomarkers to be displayed to clinicians in a meaningful way. Thus, confirmation of Hypothesis 1.1 

and 1.2 together will provide the world’s first autonome AI-based detection of human movement biomarkers 

to substitute todays subjective and qualitative movement assessments [3, 5]. In WP2, the confirmation of 

Hypothesis 2.1 will provide a stronger establishment of meaningful, trustworthy, and accurate explanations of 

movement features by the construction of a structured knowledge domain. The structured knowledge domain 

will contain a case-based reasoning system linking the per-decision movement features to motor phenotypes 

(i.e., biomarkers) of previous patient cases and their prognosis and progression of disease (Task 2.1). The 

textual and graphical visualizations in the clinical dashboard (Task 2.3) will be adapted to the end-user and 

stake holders through user-centred design to provide meaningful explanations. In WP3, the confirmation of 
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Hypothesis 3.1 will establish a XAI-based clinical service that are an improvement of current GMA service 

for early detection of CP and, thus, promote well-being for all children reducing inequality of health care 

within and among countries (UN sustainable development goal 3 and 10). Confirmation of Hypothesis 3.2 will 

be an advancement in knowledge on documentation procedures for efficient transfer of IP obtained from 

conceptual research within computer and human movement science to medical device manufacturers. The 

deliverable of Task 3.3 and Task 2.2 of WP2 will provide a novel automatic DNN architectural update 

procedure according to continuous change in the knowledge domain of infant spontaneous movements and 

motor phenotypes. This novel procedure will be the first ever to provide an automatic documentation of product 

life-cycle changes in AI-based medical software system according to EU-MDR guidelines and, thus, will be 

an advancement in secure and efficient post-market surveillance of AI-based medical software devices [11, 

14]. In summary, the DeepInMotion will bridge the technical-clinical knowledge gap improving acceptance 

and translation of AI-based medical software into clinical practice.   

2. Impact 
2.1 Potential impact of the proposed research 

The expected results of WP1 will provide a paradigm shift in clinical movement analysis by the development 

of explainable machine learning algorithms building procedures to discover biomarkers of disease outcome 

and their relation to neuroanatomical abnormalities. The expected results of WP2 will provide clinical service 

implementation of the new explainable AI techniques for early detection of CP independent of geographic 

affiliation. The expected results of WP3 will be a pre-market documentation and verification of the new 

explainable AI techniques to facilitate EU-MDR approval for AI-based medical software. Together, the 

expected results of WPs will be a low-cost digital AI-based health care service reducing inequalities within 

and among countries and providing equal rights for health care services (UN sustainable development goal 3 

and 10) by improving help and support to clinicians and primary care givers in a safe and efficient manner [25, 

26, 27].   

2.2 Measures for communication and exploitation 

The exploitable results, target audience, tools and channels, and expected impact is summarized in Table 

below. The target audience will be researchers within computer science, medical technology, movement 

science, and medicine (R&D), health care personnel (HCP; paediatricians and physiotherapists), primary care 

givers (PCG; infants’ family), and medical device manufacturers and EU license authorities (MDM). The 

measure of communication will be the following tools and channels adapted to the target audience (see Table 

below): 1) Project website (PW) and social media (SM) including blogs, Facebook, and Twitter. 2) Open 

source, peer-reviewed scientific journals, Research Gate, and conferences (SJC) and GitHub algorithm 

repository (GHR) (see also ‘Dissemination plan’ in electronic grant application form for further details). 3) 

Annual seminar, workshops, and showcases (SWS). Table below summarize the tools and channels for each 

target audience together with the expected impact for each WP in the project. The exploitable results of WP1 

and WP2 will be declared as an innovation (DOFI) and an intellectual assets management plan and patents for 

the DOFI will be developed, in collaboration with technological transfer office at NTNU, for potential transfer 

of IP to medical device manufacturers represented in the project advisory board.  
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Dissemination plan and budget: See electronic grant application form for further details 

3. Implementation 
3.1 Project manager and project group 

Project manager (PI) expertise and experience: The PI of the project will be associate professor Espen A. 

F. Ihlen. Despite his short post PhD graduate period (6 years) he has 40 publications in peer-reviewed 

international journals (20 publications as first author where 10 is in level 2 journals) and 30 oral presentation 

(first author and co-author) and 10 posters at international conferences (H-index of 17). The scientific works 

centres around methodological development within the research field of movement analyses and is consistent 

with interdisciplinary strategies for NTNU in medical, health and welfare technology. As a PhD student, he 

coordinated the writing of the project proposal to Norwegian Research Council; A personalized case risk 

assessment system for promoting independent living (The ADAPT project), which was awarded the grant of 

9.3 Mill NOK in 2013. He has contributed to the development of concepts within the European Horizont 2020 

Projects «selfBACK» and "PreventIT" which were awarded with grants in 2015. He has been one of the main 

facilitators of the inter-disciplinary collaboration between Department of Neuromedicine and Human 

Movement Science (INB), Department of Clinical and Molecular Medicine (IKOM), and Department of 

Computer Science (IDI) at NTNU and two clinics at St Olavs Hospital (NICU and Clinic of Clinical Services) 

focusing on clinical implementation of new machine learning techniques. In the years to come he will establish 

the inter-disciplinary research group, DeepMotion, on clinical movement analysis to develop new and 

improved analysis for diagnosis, recommendation of treatment and prognosis for motor disabilities like CP.  

Research group expertise and experience: The project is a start-up of the DeepMotion research group which 

is an interdisciplinary collaboration between several departments of human movement science, computer 

sciences and clinical sciences at NTNU and St Olavs hospital in Trondheim, Ålesund Hospital, and world 

leading universities and hospitals within their scientific fields. The allocation of tasks to each project team 

member is represented in Section 3.2 below: Human movement science: Department of Neuromedicine and 

Human Movement Science (INB) at NTNU, represented by associate professor Espen A.F. Ihlen (PI), will 

be the owner of the project and covers research on movement science and movement disorders with a special 

focus on CP. In the national research evaluation for medicine and biology in 2012, the research groups at INB 

was rated as very good to excellent [28]. INB runs projects spanning from mathematical modelling and 

laboratory experiments on the understanding of movement problems, to method development and evaluation 

studies, particularly using movement analysis, and clinical studies on prevention, treatment and rehabilitation 

for different patient populations. Computer science: The Department of Computer Science host the Norwegian 

Open AI-lab, represented by professor Heri Ramampiaro and professor Helge Langseth, which covers 

innovative research on artificial intelligence, machine learning, and big data analytics with application to 

diagnosis and treatment of CP patients as one of their main focus areas. Distributed, Embedded and Intelligent 

Systems (DEIS) at Department of Computer Science at University of Ålborg, represented by associate 

professor Thomas Dyhre Nielsen, are experts in probabilistic network architecture and machine learning.  

Clinical science: Professor Ragnhild Støen are head the Children Clinic and the level III Neonatal intensive 

care unit at St Olavs hospital caring for preterm and other sick infants, many of whom are at increased risk of 

adverse development. Associate professor and pediatricians Beate Horsberg Eriksen represents the Children 

Clinic at Ålesund Hospital and are head of the “Norsk perinantalmedisinsk forening”. Senior Researcher Lars 

Adde represent the Clinic of Clinical Services at St Olavs hospital responsible for follow-up of high-risk 

infants and children with CP and are PI of a project on implementation of a digital service implementation of 

GMA at several hospitals in mid-Norway (REK ID 62240, DPIA 197). The clinics cover research on neonatal 

care, advanced MRI techniques, GMA and neurodevelopmental follow-up of infants with risk of motor 

dysfunctions and coordinates the multisite GMA project with the world largest data base of standardized video 

recordings of infant movement repertoire. NICU follow-up program at the Nationwide Children hospitals in 

US, represented by Director and Professor Natalie J. Maitre, is world’s leading on the development of 

quantitative methods for neural and motor function assessment for early identification of children with high-

risk of motor disorders. The Department of Neuroscience at University of Copenhagen in Denmark, 

represented by Professor Jens Bo Nielsen, is leading on research on basic principles and mechanisms of motor 

learning, the neuroplastic changes in the central nervous system (CNS) and the relationship between 

neuroplasticity and behavioural changes in infants and children.  

     3.2 Project organisation and management 
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Project plan: The GANTT chart below summarizes the timelines for all project tasks, milestones, and 

deliverables (D1, D2, and D3) defined in Section 1.3 above. The project starts in October 2021. The positions 

responsible for the different tasks are indicated by coloured bars in the GANTT chart below. A 35% associate 

professor (PI) position funded by NTNU will coordinate all tasks in the project (green bars) and be responsible 

for the preparation of the technical documentation to the EU MDR (Task 3.3). A 100% 3-year PhD position 

funded by NFR will perform all tasks in WP1 except Task 1.1 (yellow bars). A 100% 3-year PhD position 

funded by NFR will perform all tasks in WP2 (orange bars). A 30% 3-year engineering position funded by 

NFR will develop DeepInMotion clinical service implementation (Task 2.3) into PAS system of St Olavs 

hospital in collaboration with ICT services of the hospital (HEMIT) and medical device manufacturers in the 

advisory board. A 3.5-year 30% clinical research coordination position at St Olavs Hosptital funded by NFR 

will be WP3 leader and responsible for the consensus process (Task 1.1), usability focus groups (Task 3.1), 

clinical feasibility studies (Task 3.2 and 3.4) and data management of the multi-site GMA data base (purple 

bars). A total of 12 person months (physiotherapists, paediatricians) will be dedicated to St Olavs and Ålesund 

hospital for data and study management costs of Task 3.1 and 3.2. The PhD fellowships will have at least three 

supervisors, where at least one of the supervisors is a senior researcher and have conducted the NTNU course 

for PhD supervision and where one is a clinician. Project-wide milestones related to WP 1-3 above are 

summarized as vertical lines in the GANTT chart. See the electronic grant application form for more 

information on the project wide activities and milestones. Carbon prints due to travels will be kept to a 

minimum by digital meetings and combining conferences with workshops with the international partners.   

 

Allocation of tasks to project team members and collaboration partners: The following table defines the 

allocation of task to project team members and collaboration partners: 

 

Organization and management structure and user/stakeholders involvement: The management structure 

will consist of an interdisciplinary steering group containing 2 members form NTNU (EAFI, HR), 2 members 

from St. Olavs Hospital (RS, LA) and 1 member from Ålesund Hospital (BHE) and a project consortium 

including additional 4 project partners (HL, TDN, JBN, NJM). The project will also contain an advisory board 
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of end-users and stakeholders of DeepInMotion system including 1-3 representatives of medical device 

manufacturers, 1-3 representatives from primary care givers and 2 representatives from technological transfer 

office (TTO) at NTNU. The advisory board will take part in the development of DeepInMotion clinical service 

implementation (Task 2.3) and pre-market documentation and study design for MDR (Task 3.3 and 3.4). The 

advisory board will also be involved in arrangement of annual events and showcase of the DeepInMotion 

clinical service implementation. The internal communication for the team members, collaboration partners, 

and clinics will be monthly digital meetings and annual physical meeting/workshop. Our research group will 

have weekly scientific PhD meetings and a long-term strategy for the research as well as for education of the 

PhD students of the project to become future post-doctoral scholars and master/PhD supervisors.    

Research infrastructure (WP1 and WP2): The Norwegian Open AI-Lab will provide the necessary 

computational infrastructure for this project including a state-of-the-art deep learning cluster containing 10 

Tesla V100 and 54 Tesla P100 GPUs. The host department (INB) will also provide access to NextMove core 

facility which contains a state-of-the-art laboratory for movement analysis including high-speed video, body 

worn IMUs, and several marker-based 3D motion capture systems (Vicon and Qualisys). 

Description of register data for CP detection (WP1 and WP2): The unique multisite GMA data base 

contains the world’s largest database of over 1400 standardized video recordings of infant movement repertoire 

10-15 weeks post term age from sites around the globe; Norway (5 sites), India, Belgium, Turkey, China, UK, 

and US. The infant movement repertoire is obtained by observer rated GMA of the video recordings performed 

by authorized physiotherapists. Motor function outcomes in the multisite GMA data base is assessed at 18 

months to 4 years, and includes CP status, CP subtype and functional level (Gross Motor Function Scale) and 

motor function in children without CP assessed by the Movement Assessment Battery for Children (M-ABC). 

The multisite GMA data base also includes MRI and ultrasound data.  
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