Kategorier
Fysik The light side

Mine grundämnen – Natrium

De fleata har sett de gula ljusen i gatubelysning även om dessa nu håller på att bytas ut med LED. Det gula ljuset kommer av natrium som sänder ut gult ljus, 589.0 och 589.6 nm. Den så kallade natrium dubletten, något som ingår i alla atomfysik kursers laboratorium. Just natrium har fördelan av att vara en metall som både har låg smältpunkt och låg excitations energi, vilket gör att du kan relativt enkelt förånga och driva en elektrisk urladdning genom gases och få den att sända ut ljus. Detta kan man göra effektivt vilket förklarar varför natrium var/är populärt i lampor dr man vill få bra effektivitet. I tillägg är våra ögon ganska känsliga inom detta våglångdsområde vilket också är en fördel.

Men samtidigt är natrium lätt att excitera med ljus och då lasrer i första hand vilket gör att man har detta som ett textboksexempel i labbet. Att man har en gas-cell med natrium i labbet för demonstrationer är en självklarhet. Nu är natrium väl studerat så det är inte mycket ny forskning som kan göras. Men i slutet på 1980-talet jobbade jag i ett projekt där vi skulle göra ett experiment där vi behövde ett mycket homogent magnetfält över en längre sträcka. Det vi ville göra var att kunna mäta magnetfältet med hög noggrannhet inom ett litet område samtidigt som vi optimerade magnetfäletet. En teknik som inte fanns då. Här skulle vi utnyttja just natrium och titta på Zeeman-effekten (uppsplittring av spektrallinjer på grund av magnetfält) på olika punkter längs en linje. Genom att flytta detektionspunkten och variera ljusets frekves skulle vi kunna bestämma magnetfältet. De första experimenten fungerade bra och vi kunde optimera ionom ett mindre område, men det visade sig att det blev för komplicerat samtidigt som nya mindre magnetometrar utvecklades så vårt projekt fullföljdes aldrig.

Natrium är alltid ett problembarn därfr att det finns överallt, så när man skall titta på grundämnesinnehåll i olika prover så finns alltid natrium i rummet vilket kan ställa till problem i detektionen.

Natrium är en alkalimetall som kan fatta eld i luft eller om det hamnar i vatten så man måste vara varsam, så vi hade olika stt att «desarmera» natrium vilket ofta betydde att man lät det stå i luft eller att man spreyade vatten på det för att skulle oxidera.

Så jag har jibbat med natrium och det är något som alla atomfysiker har ett förhållande till, så även jag.

Kategorier
Fysik Kärnenergi

Kärnenergi – Uran – Gruvdrift

När man talar om kärnenergi och då fission måste man komma ihåg att det finns ett fåtal fissila atomkärnor (sådan som kan splittras och brukas i en reaktor). Den som brukas mest är Uran-235 som finns naturligt, Plutonium-239 som produceras av Uran-238 genom neutron infångning, Uran-233 som kan produceras från Thorium-232 via neutron infångning. Detta betyder att vi bara har en naturlig isotop som kan brukas direkt som bränsle i kärnreaktorer.

Uran-235 förekommer naturligt i uranfyndigheter och då det finns mer uran i jordskorpan än både silver och guld borde det vara enkelt att få tag på. Men det är som med alla grundämnen en sanning med modifikation. Det kan finnas mycket men det måste vara brytbart, dvs kostnaden för utvinning får inte vara för stor. Men detta gäller om man bryter med uran som huvudprodukt, ofta är uran en biprodukt vilket gör utvinningen billigare. Dock är detta något som måste tas i beaktande för kostnaden.

Om vi ser på produktionen av uran så ligger den på ca: 50 000 ton per år idag, något som täcker behovet. Det man skall komma ihåg är att naturligt uran innehåller ca: 0.72% Uran-235 medan lätt-vatten reaktorer behöver en koncentration på 3-5% i sitt bränsle, en koncentration som kan vara högre i SMRs.

Även om det finns Uran i många länder så dominerar Kazakstan, Namibia, Canada och Australien som tillsammans står för ca 3/4 av världsproduktionen. Detta är något som gör tillgången geografiskt begränsad och priset känsligt för påverkan. På ett sätt är Uran mer osäkert ur ett strategiskt perspektiv än exempelvis olja eller gas, där produktionen är mer spridd. Detta kräver då insatser för att säkra tillgången på bränsle lokalt eller regionalt. Detta kan då innebära utvinning i lokala förekomster av uran. Vilket kan bli kostsamt om andelen uran i mineralen är låg eller om uran inte utvinns som biprodukt. Vad jag sett av debatten är inte detta ett spörsmål som har tagit upp i någon större omfattning.

När det gäller gruvdrift är tumregeln att den nästan alltid är miljöförstörande, om man bryter i dagbrott är det stora områden som kan ödeläggas, men detta gäller också underjordiska gruvor där man får stora mängder av restmaterial som i tillägg är radioaktivt.

När man separerat mineralet som innehåller uran, måste man få ut uranet, detta sker genom urlakning, dvs man använder starka syror för att lösa upp uranet och utvinna det i oxid form. Något som i tillägg ger stora mängder giftigt restmateria, slagg, som också är radioaktivt, ofta i mer koncentrarad form på grund av sönderfallsprodukter, som radium, polonium och radon. Så miljöpåverkan är ganska stor.

Det finns ett alternativ och det är in-situ leeching (urlakning på plats) där man egentligen inte har en gruva utan man pumpar ner urlakningsvätska (syror eller i några fall alkaliska lösningar) i uranförande lager, där uranet löses upp och pumpas upp till ytan för vidare behandling. Det kan se ut som en bra metod, men ger lakrester som måste lagras på grund av giftighet och radioaktivitet. I tillägg är miljöpåverkan på grund av det som pumpas ner inte ordentligt utrett. Här kan man jämföra med oönskade effekter vid fracking.

Så man kan konstatera att brytning av uran inte är speciellt ren eller miljövänlig. Det är en aspekt som man bör titta närmare på och lyfta upp i debatten. Speciellt som det kan komma handla om gruvdrift i närmiljön som kommer ge betydligt större utsläpp av radioaktivitet än en kärnrektor ger.

Man bör dock notera att det finns stora mängder uran upplöst som joner i haven, något som det tekniskt sett är möjligt att utvinna, som visats av japanska forskare på 1980-talet, men det har inte varit praktiskt möjligt att få till det.

Här handlar det dock om att försöka få till en reell helhetsbild och inte cherrypicking.

Kategorier
Experiment Fysik Kemi The light side

Mina Grundämnen – Neon

Neon är en ädelgas och det 5e mest förekommande grundämnet i universum. Det är trots detta relativt sällsynt på jorden, där det till skillnad från Helium inte skapas genom radioaktivt sönderfall. Neon skapas genom fusion av kol-12 kärnor i stjärnor och allt neon i universum kommer från detta. Det som de flesta förknippar neon med är det röd-oranga ljuset i neon-rör. Men neon har används i olika typer av vakuum-rör, men även i olika typer av lasrar, He-Ne laser eller excimerlasrar för XUV inom litografi i halvledar industrin.

För min del har jag i första hand jobbat med He-Ne lasrar, både för upplinjering, som ljuskälla i undervisningslaboratoriet och som referens för en våglängdsmeter. En He-Ne har normalt tre moder (våglängder) där två har en polarisation och en den vinkelräta mot dessa. Detta gör att man kan isolera en mod och bestämma exakt vilken våglängd den har med hjälp av absorption i jod, eller låsa våglängden genom att variera längden på laserkaviteten. Även om denna tekniken nu ersatts av andra är det mycket att lära sig med att bygga en jod-stabiliseras He-Ne laser.

Även om jag inte direkt jobbat med neon så har jag arbetat med en applikation där neon spelar en viktig roll. I ntnu.no/blogger/fysikkforfakirer/2019/07/31/mina-grundamnen-helium/ skrev jag om mitt arbete med en jon-guide där exciterat He var en källa till problem genom att det hamnade i Triplett-tillståndet, samma tripplet tillstånd som står för energin överföring från He till tillstånd i Ne som ger laser effekten. I och med att vi har en nästan resonant överföring av energi bör en liten inblandning av Ne i He-jeten göra att man får en minskning av antalet tripell-tillstånd. En minskning större än den man hade observerat med inblandning av Xe som har en icke-resonant överföring. Jag skrev en proposal och skickade till labbet som jag hade lämnat 1 år tidigare och bad de att prova. Jag fick dock inte något svar så jag vet änideg inte om det gjorde försöket eller inte.

Så på det sättet är neon ett av mina grundämnen.

Kategorier
Fysik Kemi The light side

Mina grundämnen: Nihonium

Grundämne 113 som syntetiserades på RIKEN 2004. Det rapporterades först från Dubna, men det japanska ansågs ha dokumenterat det bättre.
Jag har själv inte jobbat med det, men var på RIKEN i Wako-shi i slutet av 1990-talet och kände många av de som jobbade på projektet som syntetiserade Nihonium. (som Morita-sama)

Det har dock en ganska kul koppling för mig. Jag bodde i en lägenhet inte långt från järnvägsstationen i Wako-shi och gick varje dag till RIKEN. I samband med 50 års jubileet till RIKEN i Wako-shi, markerade man det genom att skapa en «väg» från järnvägsstationen och döpte den till Nihonium street. ( https://itaintmagic.riken.jp/whats-up-with-us/nihonium-street/ ). Till stora delar samma väg som jag gick till RIKEN på.
Jag hittade en video på YouTube där en person går från stationen till RIKEN längs Nihonium street. Så jag kunde över 20 år efter jag bodde där uppleva vägen igen. Det har skett mycket, huset där jag bodde är borta men jag mindes många av de hus, grönområden och broar som syns i videon ( https://www.youtube.com/watch?v=PYTZZ0E4jF8&vl=en-US ). Från det jag minns så startade min väg 4 minuter in i videon.

Så på det sättet kan jag säga att nihonium är ett av mina grundämnen.

Kategorier
Experiment Fysik Historia Kemi The light side

«Mina» grundämnen!

I samband med periodesystemets år 2019, finner man olika typer av aktiviteter och artiklar om olika grundämnen. I Sverige har man tilldelat de olika universiteten olika grundämnen som de är faddrar för. I tillägg had det gjorts ett försök med Landskapsgrundämnen för att få upp kemiintresset.

Då jag varit aktiv inom både atom- och kärnfysik som forskare och genom detta kommit i kontakt med olika grundämnen, kan det vara naturligt(?) att skriva om mina erfarenheter med just dessa grundämnen. En del har jag bara(?) behandlat teoretiskt medan andra har haft en mer praktiskt betydelse, som material i utrustning eller som grundämne som jag deltagit i studier av. Totalt rör det sig om ett 30-tal grundämnen som jag haft kontakt med både bildligt och bokstavligen. Jag kommer att behandla grundämnena i olika inlägg och ska försöka begränsa mig till ett grundämne åt gången, men i vissa fall kan man behandla flera på en gång.

Kategorier
Kemi

Utrotningshotade grundämnen

Vår teknologi, eller rättare vår ekonomi baseras på iden att jordens resurser är oändliga. Avfall har kunnat dumpas i hav eller släpps ut i luften, utan negativa effekter. Detta är dock något som man egentligen vetat inte är möjligt länge, fast det verkar många glömt av. Förbud att elda med kol i London fann redan 1306 för att förhindra luftföroreningar. I norden ledde överanvändning av skog till att det inte fanns ett träd i närheten av olika gruvor.

Trots det har vi alltid lyckats hitta nya källor. När brist på gödsel uppstod i Europa importerade man guano från andra länder. När det blev ny brist skapades nya kemiska metoder för framställning. Men detta lyckades alltid för att man hela tiden hade grundmaterialet, grundämnena, tillgängliga. Men risken är överhängande för ett antal grundämnen, att det inte kommer vara möjligt att utvinna dessa. Koncentrationerna blir så låga att det inte är ekonomiskt eller fysiskt/kemiskt möjligt att få fram grundämnena. American Chemical Society (ACS) har tagit fram en lista över grundämnen som så att säga kan «ta slut». (https://www.acs.org/content/acs/en/greenchemistry/research-innovation/endangered-elements.html)

Vi finner ett grundämne som det varit diskussioner om de sista åren och som bland annat gjort att designen av NMR-maskiner har ändrats och att forskningslaboratorier haft svårt att få tag på det: Helium.

Idag är tillgången på Helium begränsad och finns bara på ett fåtal ställen. Så detta är allvarligt.

Men Helium är inte det enda grundämnet som hotat. Viktiga beståndsdelar i elektronik industrin är också i farozonen; Indium, Gallium, Germanium och Arsenik. Kisel passar inte till allt utan dessa är nödvändiga.

Grundämnen som är sällsynta i naturen Os till Bi är också sällsynta och kan vid ökad användning risker att falla från. Dock kan man troligen inom en framtid hitta ersättare, eller nya effektivare utvinningsmetoder, speciellt om vi får tillgång till mycket och billig energi.

Men det som man kanske skall oroa sig mest för är Fosfor (som vi fick från guano som gödsel på 1800-talen), som är nödvändig i våra celler och för att få mat, här kan vi knappast räkna med någon ersättning. Mycket av det som används läcker bland annat ut i haven, där vi måste vänta mycket länge på att det skall anrikas för att bli utvinningsbart. Så Fosfor som vi behöver i gödsel kan bli en bristvara. Lösningar på gödsel problematiken har löst tidigare med import av mumier som maldes till gödsel. Så kanske Soylent Green dyker upp i en annan form än Harrison tänkte sig…