Livet, Universum, Fysik, Undervisning, Lärande och allting annat..

Historia

Mina Grundämnen – Kol

av 18. august 2020 i Fysik, Historia, Kemi, The light side med Ingen kommentarer

Kol är ett grundämne som är mycket speciellt. Ser man astrofysiskt så borde egentligen inte Kol finnas. Eller rättare sagt, det är en mycket speciell egenskap som gjort att liv och tyngre grundämnen överhuvudtaget kan existera. Fusion i stjärnor ger i princip bara He-4, men Be-8 som man får när två He-4 kolliderar är inte partikelstabil, vilket betyder att den har en livstid på under 10^{-16} s det vill säga under den tiden måste en He-4 kollidera med Be-8 för att bilda ett exciterat tillstånd av C-12. Detta är mycket osannolikt, men nu finns en liten detalj till som hade kunnat ge en ännu mindre sannolikhet, dvs energinivåer i C-12. Det finns ett energitillstånd i C-12 som ger en ökad sannolikhet för reaktionen, hade energin varit annorlunda hade inte sannolikheten varit mycket mindre och hade inte kunnat ske. Så om det inte vore för det.. inget kol och inget liv..

Men det speciella med kol tar inte slut där. I sitt yttre skal finns 2s- och 2p-elektroner och det ger några mycket speciella egenskaper. p-elektronerna kan bilda 3 olika orbitaler och vi kan även få en hybridisering där s-elektronerna kommer till. Summan av det hela är att kol kan ha upptill 4 olika bindningar, se metan CH4. Men bindningarna kan variera så vi kan ha 1,2,3 st, vi kan ha dubbelbindningar och trippelbindningar. Något som gör att det kan binda med andra grundämnen på ett mycket varierat sätt, det vi kallar organisk kemi. Detta är grunden för liv.

Men vi får en annan egenskap och det har med kristallstrukturen att göra. Vi har två kristall strukturer som förekommer i naturen, Grafit och Diamant.

Grafit består av en hexagonal struktur med relativt starka bindningar i ett plan och svagare bindningar mellan planen. Planen bilder grafen, ett material med speciella egenskaper. Men planen kan också rullas ihop till rör eller till «fotbollar». Under mina studier så var det en forskargrupp (nabogruppen) som sysslade med beräkningar på just detta så vi fick hela tiden information om vad som hände i forskningsfronten. Så C-60 och C-70 var på den tiden «hett». Jag sysslade inte själv med det men det fanns diskussioner om hur man kunde göra olika experiment.

Diamant ligger mig varmare om hjärtat. I min utbildning ingick Fasta tillståndets fysik, där examinationen var en hemexamen där frågor skulle besvaras för ett grundämne som lottades ut bland studenterna, där jag fick kol, och valet var mellan Grafit och Diamant.

Diamant är en speciellt material, det är metastabilt, dvs diamanter förstörs sakta, det är i ren form en halvledare, men leder värme bättre än de flesta material. Det är transparent, extremt hårt och har ett högt brytningsindex.

Diamant förekommer naturligt och då ofta med olika föroreningar som ger de olika färgnyanser.

Rent fysiskt har diamant speciella egenskaper som gjorde svårt att att hitta data för min hemexamen, jag hade mer än 3 olika typer att förhålla mig till och att det antingen fanns mycket data eller inget alls. Så jag har ett intressant förhållande till kol och diamanter..

Mina Grundämnen – Helium

Helium är det näst vanligaste grundämnet i universum. Trots det är det inte så vanligt på jorden, utan kan klassas som utrotningshotat (se: https://www.ntnu.no/blogger/fysikkforfakirer/2018/02/02/utrotningshotade-grundamnen/ ). Men detta beror främst på svårigheter att utvinna helium. Dock är det så att de tyngre grundämnena i jordens inre konstant genererar helium genom alfa-sönderfall.

Helium är ett grundämne som man observerade på solen(därav namnet, Helium efter Helios solguden i grekisk mytologi) innan man fick fram det på jorden. Solförmörkelsen 1868 gjorde att många observerade den gula He-linjen i coronan, Det är dock Janssen som fått äran, ibland med Lockyer som föreslog att det var ett nytt grundämne. De första som isolerade helium på jorden var Cleve och Langlet 1895.

Det främsta vetenskapliga bruket av helium är för att kyla ner supraledare, och det finns många artiklar som tar upp cryogenetiska användelser och studier av helium vid låga temperaturer. Jag har inte jobbat med flytande helium men har arbetat med det på andra sätt.

Helium spektret är ett av de experiment som jag fick göra som student och senare som handledare. Det intressanta med det spektret är att det är två spektra i ett. Singlett-He och Triplett-He, Parahelium och Ortohelium. Något som borde göra det enkelt att lösa, men så är inte fallet. Det går att göra grova beräkningar för att få fram energinivåerna, med systemet är ett tre-kroppa problem utan analytsika lösningar så olika approximationsmetoder måste användas. Men mina erfarenheter med detta visade sig komma till nytta på ett oväntat ställe.

Efter att jag försvarat min avhandling fick jag jobb vid University of Birmingham, UK, där ett experiment med laserspektroskopi på radioaktiva isotoper skulle flyttas till Finland. Vid den tiden var varma jonkällor vid acceleratorer i bruk på den flesta ställen. Men i Jyväskylä använde man sig av en gas-jet (He)(IGISOL) där producerade isotoper stoppades och tog åt sig elektroner i gasen, så att sedan skjutas ut i en gas-jet. Jeten som man får (om tryckskillnaden är stor nog) är supersonisk, dvs de enskilda atomerna är kall (låg spridning i hastighet) i alla fall om man har en fri expansion. Då var det många som sa att det inte skulle vara möjligt att få en smal hastighetetsfördelning som möjliggjorde laserspektroskopi. Det fanns studier som antydde att så var fallet.

Dock hade man i dessa studier använt elektriska fält (runt 500 V/cm) i expansionsvolumen. Då alla atomer rör sig med ungefär samma hastighet där så kommer ett fält att accelerera ev. joner (som skall studeras) och de kommer då att kollidera med långsammare He-atomer och tappa fart, vilket i sin tur ger en ökad hastighetsspridning. Lösningen var att minska fält-styrkan för att undvika detta.

Men det fanns ett problem till, med gas-jet, den är inte speciellt effektiv så allt som stoppas kan inte utnyttjas utan det kan sluta som atomer eller dubbelladdade joner. Här kommer heliums energinivåer in. Grundtillståndet ligger på runt -24eV, vilket gör att allt som stoppas i gasen borde sluta som dubbelladdade joner. Men det sker inte, något som man kan tro beror på föroreningar i gasen. För mycket och man tappar alla joner. Men Helium har två system Triplett-He som är metastabilt har en «jonisationsenergi» runt 4,7 eV. Men denna energinivå tillsäger att man bara får atomer. Så det handlar om en balansgång. Problemet är att man inte vet om det finns Triplett-He i gasen, det borde men vad jag vet så är det inte bekräftat än. Det finns två sätt, 1) obsertvera ljus får gas-kammaren och se efter triplett linjer eller 2) under exteremt rena förhållanden se efter en jon med massa 8, He-molekyl jonen. Även om Helium är en ädelgas så kan den bilda molekyler men då måste en eller båda av atomerna vara i triplett-tillståndet.

Så helium är ett av de grundämnen som jag har ett speciellt förhållande till.

Mina grundämnen-Väte/hydrogen

Väte är det lättaste grundämnet och består i sin enklaste form av en proton och en elektron. Det förekommer i tre olika isoptoper som har fått egna namn, Deuterium och Tritium (efter 2 och 3). Namnet Väte fick det då Ekeberg(1795) inte hittade ett bättre svenskt namn för hydrogenium (vattenbildare) som är det engelska namnet, Wasserstoff på tyska. Så på ett sätt är det en slump att Svenska (och Finska, Vety) avviker till viss del från andra språk.

Väte är det vanligaste grundämnet i universum och kan observeras på himlen, både med optiska teleskop (Balmer alfa- linjen i rött) och med radioteleskop (7 cm linjen).

Som atomfysiker är väte-spektret en av de första som man träffar på. Det är relativt enkelt att både studera och analysera. Samtidigt så används vätets olika spektrallinjer inom ex. astrofysiken. Men samtidigt är väte intressant för olika typer av precisionsmätningar. Att mäta vätespektret med hög precision var under min studietid något som genomfördes på de främsta laboratorierna. Och nya mer precisa värden av ex. Rydbergskonstanten kom med jämna mellanrum allt medan nya spektroskopska tekniker utvecklades. Även idag så finns ett stort intresse men då när det gäller mätningar på Anti-väte (en antiproton och positron) för att se om det finns någong skillnad mellan materia och anti-materia.

För min del så var vätespektret en av laboration som jag handledde som doktorand under flera år vid CTH. Den utrustning som vi hade där (en prisma spektrometer) hade inte den bästa upplösningen, men det finns idag relativt billiga spektrometrar där det är möjligt att se isotopskiftet mellan väte och deuterium.

Men det är inte bara inom atomfysik man kan utnyttja väte. Deuterium och protoner är ganska bra projektiler i kärnfysik experiment. I tillägg kan man detektera väte med radioteleskop, vilka idag är tillgängliga för amatörer. Så det finns en ganska stor potential i undervisningen.

Även om jag inte direkt jobbat med väte i forskningen, så är det ett grundämne som är där och som vi fortfarande utforskat fullt ut. Man har kanske observerat metallist väte nu. Men det behöver bekräftas, så historien är inte slut än.

«Mina» grundämnen!

I samband med periodesystemets år 2019, finner man olika typer av aktiviteter och artiklar om olika grundämnen. I Sverige har man tilldelat de olika universiteten olika grundämnen som de är faddrar för. I tillägg had det gjorts ett försök med Landskapsgrundämnen för att få upp kemiintresset.

Då jag varit aktiv inom både atom- och kärnfysik som forskare och genom detta kommit i kontakt med olika grundämnen, kan det vara naturligt(?) att skriva om mina erfarenheter med just dessa grundämnen. En del har jag bara(?) behandlat teoretiskt medan andra har haft en mer praktiskt betydelse, som material i utrustning eller som grundämne som jag deltagit i studier av. Totalt rör det sig om ett 30-tal grundämnen som jag haft kontakt med både bildligt och bokstavligen. Jag kommer att behandla grundämnena i olika inlägg och ska försöka begränsa mig till ett grundämne åt gången, men i vissa fall kan man behandla flera på en gång.

Periodiskt detektivarbete!

av 26. mars 2019 i Historia, Kemi med Ingen kommentarer

I år är det 150 år sedan Mendeleev först publiserade det som kom att bli det periodiska systemet(se Periodesystemet 150 år på NTNU). Det var inte som de planscher vi ser idag utan har genomgått en förändring över tid. Men det är inte bara utseendet som kan ge en bild av när det system som du tittar på gjordes.

Det officiella periodesystemet (Dec 2018)

För några år sedan såg inte periodesystemt ut som det gör på bilen ovan, Utan de tyngsta grundämnena hade hetat Uus, Uuo osv. Om man vet när de olika grundämnena upptäcktes kan man se ungefär när det aktuella systemet trycktes.

På NTNU har jag hittat ett periodesystem som trycktes 1947, detta vet jag för att tryckår står på det. Men även utan det hade jag kunnat säga ungefär när det trycktes. Låt oss titta på hur:


Periodesystem från 1947 i NTNUs samlingar (Inst. för Fysik)

Utan att behöva titta på transuranerna finns i bilden två ledtrådar som sätter tiden inom 3 år. Mellan Zr och Mo, står det Cb vilket är Columbium som användes utanför Europa (USA) för Niob (Nb) fram till 1950. Detta talar om att det är ett amerikanskt periodesystem och att den är tryckt före 1950.
Bredvid Mo står det Tc (teknetium) ett grundämne som detekterades 1937 och som oftast kallades masurium (Ma). Teknetium som namn föreslogs i januari (publiserat i mars) 1947 och accepterades av upptäckarna direkt. Med andra ord så är periodesystemet tryckt efter mars 1947 och före 1950. Hade jag tittat på transuranerna så hade jag sett Neptunium, Plutonium, Americium och Curium som alla upptäcktes under andra världskriget.

Vilka grundämnen som finns och vilka symboler de har ger en bra bild över var och när ett periodesystem tryckts. Så man kan utmana sig själv med att bestämma när det trycktes.

Periodesystem från 1947. Observera att Argon skrivs med «A» och Francium med «Fa»

Moderna läromedel?

Man får ofta höra att föreläsningar inte ändrats på 7-800 år. Ofta med referens till en illustration. Men hur sant är detta? Svaret är inte alls. Går vi till tiden före Guttenberg (före ca 1500) så fanns inte böcker i tryckt form. Dessa var handskrivna och mycket dyra. Det var helt enkelt inte tillgängliga. Detta ger då en förklaring till bilden av föreläsningar, det var en person som läste ur den/de böcker som fanns tillgängliga. Detta finns fortfarande kvar i den akademiska titeln «Reader» i UK.

Böcker och pamfletter var viktiga källor till kunskap under 16- och 17-talen och «föreläsningar» fick en annan form i de fall som de överhuvudtaget existerade. Diskussioner, demonstrationer och frågor hade sin grund i att antalet studenter (i många fall var lågt). En stor del av undervisningen skedde i det vi skulle kalla mentorgrupper.

Men när antalet studenter ökade ändrades undervisningen och vi fick «moderna föreläsningar» samtidigt med detta kom också bättre läroböcker. Föreläsningarn formades mer och mer efter innehållet i böckerna utan att det egentligen behövs, utan mer av «traditionen».

Men om vi tar ett steg tillbaka och tänker, så finns «allt» presenterat i boken och ofta på ett pedagogiskt bra sätt. Vad skall då en föreläsning handla om? Ett svar är att anpassa till den aktuella kontexten, boken (som troligen brukas i hela världen) är inte anpassad till detta. Det är viktigt att utöka och förtydliga innehållet i boken till kursen, inte tvärt om. Som det är nu så kan det se ut som om boken bestämmer innehållet. Men detta finns det idag sätt att komma undan.

Böcker kan idag vara dyra och speciellt om det är en bok som kanske bara brukas i en kurs och aldrig öppnas igen. Men det finns idag web-böcker som håller minst lika bra kvalitet som tryckta böcker. I vissa fall bättre på grund av länkar och snabbar uppdatering. Openstax.org är en sådan site, där böcker i ett antal fält finns och som brukas av upptill 50% av studenter i USA. Men detta är bara en aspekt.

Web-baserade böcker möjliggör också att man kan lägga till egna notater, quiz, länkar och multimedia material direkt i boken. Detta kräver dock en unik web-adress. Men detta är möjligt. Med andra ord vi kan anpassa både föreläsningar och läroboken till en kurs i stället för att använda boken som mall.

Nu i vår använder jag en web-bok som kurslitteratur i en kurs och hoppas att inom en snar framtid kunna prova att ha en web-bok med tilläggsmaterial i en kurs. Är du som föreläsare intresserad att prova eller en student som vill ha detta, hör av dig så kan jag presentera ideen i detalj.



Pendeln fungerar också som en analogi för undervisning.

Man säger att den som inte lärt av historien kommer att upprepa den. Detta gör det intressant att läsa gamla läromedel, något som faktiskt kan vara ett intressant forskningsfält. Då med tanke på när olika saker kom in i undervisningen hur det presenteras och hur presentationen utvecklats.

Bland min samling av antikvariska läroböcker finns ett fint exempel av paret Petrini; Henrik och Gulli, Enklare fysiska experiment utgiven 1905. Men när man läser inledningen så slås man av hur mycket av detta nu kommer tillbaka. Pendeln slår tillbaka.  Många av råden är sådana som jag själv gett elever och studenter under mina år som undervisare(innan jag fick tag på boken 2005). Så inget nytt under solen.

 

Jag återger delar (i original) här och hoppas att ingen tar illa upp. Det är ett mycket talande tidsdokument.

Enklare fysiska experiment.

I. Allmänna anvisningar.

Inledning. År 1905 bildar en vändpunkt i det svenska undervisningsväsendets historia; ty från och med i år införes den experimentella metoden i undervisningen vid statens läroverk. Visserligen att börja med endast i två ämnen, fysik och kemi, men det är att hoppas, att de andra — närmast biologi och psykologi — skola följa efter i den mån de vetenskapliga metoderna i dem hinna lämpa sig för skolans behof. Häraf blir nu en omedelbar följd, att en exaktare undervisningsmetod måste vinna insteg äfven i alla andra undervisningsanstalter såsom i samtliga flickskolor, folkskoleseminarier och folkskolor. De sistnämnda hafva alldeles särskilda förutsättningar härför, i det att de hittills varit totalt befriade från den tidsödande språkundervisningen. Med en reform af religionsundervisningen kan i dem godt utrymme beredas för en verkligt uppfostrande och för lifvet fruktbärande undervisning i de exakta vetenskaperna matematik, mekanik, fysik, kemi och biologi jämte deras tekniska tillämpningar på industri och åkerbruk, just de områden, hvaråt de flesta af folkskolans alumner komma att ägna hela sitt återstående lif.

Men hvarifrån taga lärare till denna undervisning ?

Hvad först de fullständiga allmänna läroverken beträffar, så torde det öfverallt finnas lektorer som äro fullt kompetenta att anordna en sådan undervisning, och det vore därför önskvärdt, om dessa nu ville åtaga sig densamma i fjärde och femte klasserna för att i realskolan sätta igång en modärn experimentell undervisning, som hvilar på elevernas laboratorieöfningar Läroverksrådet T. Moll har i särskilda broschyrer lämnat anvisningar på dels huru lokalerna böra inredas och dels huru undervisningen lämpligen kan anordnas, anvisningar som torde vara i allmänhet tillräckliga för lärarna i dessa skolor. Men i realskolor, samskolor, flickskolor, folkskoleseminarier och folkskolor torde det ännu finnas lärare och lärarinnor som själfva aldrig idkat laborationsöfningar vid universitet eller annorstädes och därför känna behof af en något utförligare ledning vid laborationsöfningarnas anordnande.det är hufvudsakligen för dem, som denna bok är afsedd.

Den experimentella undervisningen bör naturligtvis börja redan i småskolan — såsom den faktiskt gör i matematik, då barnen få räkna på kulor — men sedan ej häller afbrytas. Mätningar och vägningar böra göras så tidigt som möjligt och den experimentella geometrin och fysiken böra sättas i omedelbart samband med undervisningen i papp-, trä- och metall-slöjd. De barn som äro i tillfälle att börja tidigt med laborationer kunna få experiment och konstruktionsöfningar mer varierade än som här visas, de som börja senare få åtnöja sig med ett mindre urval.

Hvarje elev bör vara försedd med två tämligen tjocka anteckningsböcker. Den ena användes som kladd under experimenten ; i den andra renskrifves experimentet, hvarefter den lämnas att genomses och rättas af läraren. Härvid iakttages, att texten förekommer endast på hvaran nan sida, under det eleven gör på den andra sidan en så tydlig och vacker ritning som möjligt af de experimentella anordningarna. Läraren bör undvika att i början gifva några formulär eller andra dylika förhållningsregler för barnen att gå efter. Det må vara nog med följande enkla regel:

»Skrif och rita så tydligt, att en kamrat som ej har gjort experimentet skulle kunna göra efter hvad du har gjort, endast genom att se din beskrifning. »

Eleven bör själf få försöka sig på att dra slutsatser ur sina resultat och eventuellt härleda en lag. Först vid rättandet af uppsatsen bör läraren visa huru man plägar exaktare formulera den af eleven funna lagen och lära honom att göra en beräkning i en särskild kolumn i tabellen af kvoten ( » proportionella »), produkten ( »omvändt proportionella») etc. af de funna storheterna eller deras kvadrater, kuber m. Om det visar sig att man i denna kolumn får ett tal som är ungefär konstant, tages medelvärdet af de erhållna talen. Äfven bör eleven tillhållas att aktgifva på felkällor. Hvarje bestämning bör göras minst två gånger, så att eleven får tillfälle att uppskatta felets storlek och förstå hvarför han bör undvika att sedan vid beräkningarnataga med för många decimaler. Efter någon tid bör han vänja sig vid att beräkna felet i uppskattningarna i procent af totala värdet.

De olika experimentens ordning sins emellan bör ej bestämmas med någon pedantisk hänsyn till ämnets natur annat än där detta är absolut nödvändigt, nämligen då ett experiment ovillkorligen förutsätter kännedom om ett annat. Man får då ständigt fritt val mellan experiment tillhörande de mest skilda områden, hvarigenom möjliggöres att experimenten kunna ordnas efter deras lättfattlighet, de experimentella svårigheterna, och de matematiska förutsättningarna. Denna decentralisation är äfven af nytta för eleven, i det att han får vänja sig vid att bli kastad »in medias res» och omedelbart gripa sig an med en ny sak. Härigenom blir hans bildning mer aktuell och kommer ej, såsom nu ofta är fallet, att bestå blott i ett vetande, som är så väl sorteradt i särskilda fack, att han ej kan tillämpa detsamma på ett särskildt fall, förrän han lyckats passa in detta under en lämplig rubrik. Däremot bör man pa lektionstimmarna hänvisa till experimenten och sammanfatta hvad eleverna därvid lärt sig.

Det är synnerligen uppfostrande för eleven att vänja sig vid att ständigt kunna reda sig med de enklaste och de mest varierande rent tillfälliga hjälpmedel. Ju mer af egen uppfinningsförmåga han nedlägger vid arrangerandet af experimentet, dess bättre. Kan han tilläfventyrs hitta på en egen metod att bestämma en sak, så må han försöka densamma och sedan pröfva den genom att göra om bestämningen efter en annan metod. Enklare apparater böra så vidt möjligt förfärdigas af eleverna själfva, och skolan får därigenom så småningom ett tillräckligt antal exemplar af dem. Man bör hällre lägga an på att med stativ, glasrör, korkar, kautschukslangar, glasbägare,

millimeterpapper etc. sammansätta behöfliga apparater än att köpa dem färdiga, en apparat för hvart experiment. Frånsedt prisbilligheten äro sålunda anordnade experiment de mest uppfostrande, helst de gifva eleven en eggelse att hemma experimentera på egen hand.

 Om läraren har tillräckligt material för att låta alla barnen göra samma experiment samtidigt, så kan han naturligtvis sköta en större afdelning, än om olika lag skola göra olika experiment. I förra fallet kan han låta eleverna förena sig i grupper om två och två som göra experimentet tillsammans. En stor fördel härmed är, att läraren kan sammanställa de olika gruppernas resultat. Vid början af lektionen ger han några korta anvisningar på 5 a 10 min., hvarefter eleverna få gå att själfva framtaga hvad de behöfva. Är klassen så stor, att 30 st. arbeta samtidigt vore det godt, om någon äldre elev (från en annan klass) ville åtaga sig att vara amanuens och hjälpa till. Men i en skola med ringa tillgångar bör läraren, så länge han är ovan, ej taga mer än 16 elever på en gång. Dessa ordnas i fyra grupper om fyra stycken, och hvarje lag för sitt särskilda experiment. Hållas dessa laborationer t. ex. en gång i veckan, behöfver läraren sålunda endast omkring en gång i månaden tänka ut nya experiment, fyra stycken, och afprofva dem. Om man blott lyckas öfvervinna en viss misstro till sig själf och griper sig an med att anordna experimenten, skall man till sin förvåning finna huru ytterligt ringa hjälpmedel man kan reda sig.

Men redan efter en termin bör läraren hafva vunnit tillräcklig erfarenhet och eleverna blifvit tillräckligt hemtama på laboratoriet för att han skall kunna fördela dem i grupper två och två, äfven om olika lag skola göra olika experiment; i detta fall bör den ena hälften af afdelningen komma 1/2 timme senare än den andra.

 

En annan rolig detalj är att det exemplar jag har är dedikerad av författarna till Svante Arrhenius.

Roterar jorden eller roterar himlen?

av 16. mars 2018 i Fysik, Historia med Ingen kommentarer

Ett inte alltför enkelt problem är att «bevisa» att det är jorden som roterar och inte universum som roterar runt jorden.
Här har vi ett problem  då det egentligen inte finns något enkelt sätt att visa detta. Det sunda förnuftet säger att jorden är fast och så stor att den inte kan rotera. Detta är detta som använts som argument tidigare och fortfarande används. Men vad har vi för «bevis». Det första handfasta beviset var Foucault’s pendel.
Foucault monterade en tung pendel i Pantheon, Paris (han hade visat försöket tidigare i Paris observatorium) och visade att svängningsplanet för pendeln ändrades. Då pendeln svänger i sitt eget referenssystem (relativt fixstjärnorna) utan påverkan av jordens rotation är detta ett bevis på att de olika referenssystemen (jordens och pendeln) inte är de samma hela tiden utan en av dom roterar, i detta fallet jorden.

Dock är det så att luftmotstånd och friktion i upphängningen gör att vi hela tiden måste tillföra energi till pendeln för att den inte skall stanna, så kan motståndarna använda detta som motargument.

Har vi andra experiment som vi kan prova?

Svaret är ja, men de är inte så lätta eller tydliga att genomföra.
Ett övertygande experiment vore att  släppa ut vatten ur en tank och se den virvel som bildas när vattnet strömmar ut. Riktningen beror på Coriolis-effekten (https://en.wikipedia.org/wiki/Coriolis_force) på grund av jordens rotation. Men problemet är att man måste se till att vattentanken är symmetrisk, det samma gäller hålet som måste öppnas underifrån. Dessutom måste man lämna vattnet i ro för att alla strömmar hinner stoppa och alla temperaturgradienter jämnas ut. Gör man det kommer vattnet att rinna ut medurs på norra halvklotet och moturs på södra halvklotet. Så det man ser och får höra att det alltid är så stämmer inte, utan utformningen på vattentanken och kvarliggande strömmar påverkar mer än Coriolis-kraften.

Det som skulle kunna användas är hur luftmassorna rör sig när dom utgår från ekvatorn, det vill säga att dom alltid viker av mot öst, Men även det gör det svårt att övertyga.

Har vi ett avgörande bevis? Ett som det inte går att argumentera mot. Det har vi men som i många fall så handlar detta om att övertyga någon som är så fast i sin tro att vad du än kommer med. Ett exempel på detta hittar man i Physics for the Inquiring Mind av Eric Rogers,  «The demon theory of Friction».

Här något förkortad:


The Demon Theory of Friction

How do you know that it is friction that brings a rolling ball to a stop and not demons? Suppose you answer this, while a neighbor, Faustus, argues for demons. The discussion might run thus:

You: I don’t believe in demons.
Faustus: I do.
You: Anyway, I don’t see how demons can make friction.
Faustus: They just stand in front of things and push to stop them from moving.
You: I can’t see any demons even on the roughest table.
Faustus: They are too small, also transparent.
You: But there is more friction on rough surfaces.
Faustus: More demons.
You: Oil helps.
Faustus: Oil drowns demons.
You: If I polish the table, there is less friction and the ball rolls further.
Faustus: You are wiping the demons off; there are fewer to push.
You: A heavier ball experiences more friction.
Faustus: More demons push it; and it crushes their bones more.
You: If I put a rough brick on the table I can push against friction with more and more force, up to a limit, and the block stays still, with friction just balancing my push.
Faustus: Of course, the demons push just hard enough to stop you moving the brick; but there is a limit to their strength beyond which they collapse.
You: But when I push hard enough and get the brick moving there is friction that drags the brick as it moves along.
Faustus: Yes, once they have collapsed the demons are crushed by the brick. It is their crackling bones that oppose the sliding.
You: I cannot feel them.
Faustus: Rub your finger along the table.
You: Friction follows definite laws. For example, experiment shows that a brick sliding along a table is dragged by friction with a force independent of velocity.
Faustus: Of course, the same number of demons to crush however fast you run over them.
You: If I slide a brick among a table again and again, the friction is the same each time. Demons would be crushed on the first trip.
Faustus: Yes, but they multiply incredibly fast.
You: There are other laws of friction: for example, the drag is proportional to the pressure holding the surfaces together.
Faustus: The demons live in the pores of the surface: more pressure makes more of them rush out and be crushed. Demons act in just the right way to push and drag with the forces you find in your experiments.

By this time Faustus’ game is clear. Whatever properties you ascribe to friction he will claim, in some form, for demons. At first his demons appear arbitrary and unreliable; but when you produce regular laws of friction he produces a regular sociology of demons. At that point there is a deadlock, with demons and friction serving as alternative names for sets of properties – and each debater is back to his first remark.


 

Newton’s Första och Andra Lag

av 8. februar 2018 i Fysik, Historia, Undervisning med Ingen kommentarer

När jag tittade igenom en inspelad föreläsning i mekanik, kom det en fråga från en student om Newton’s första lag (N1). Vad är den till för? Föreläsaren svarade att den var ett specialfall av Newton’s andra lag (N2). Detta fick mig att reagera och börja fundera. Hur ser vi egentligen på N1 och N2. Det som på pappret såg ut att vara en ”lätt” fråga visade sig inte vara helt enkel. Jag startar från början.

Principia, Newton’s första lag

Newtons lagar, kommer från Isaac Newton’s mästerverk ”Principia”[1], där dom formulerades ordentligt första gången. Det som bör noteras är att N1 är en omformulering av Galileo’s tröghets princip, Att ett objekt som inte utsätts för några krafter kommer att fortsätta sin rörelse i all oändlighet. Även om Newton gav Galileo fullt erkännande för N1, så är Newton’s formulering mer djupgående. Men det var inte bara Galileo och Newton som kommit fram till liknande slutsatser, Thomas Hobbes och Rene Descartes hade liknande tankar.

Newton’s första lag hittar vi i Principia under Axiom. På latin formuleras den:

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.

Law I: Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.

Vad säger detta ”axiom” egentligen? Här kan man ha ganska många olika tolkningar, men här måste vi som Newton skriver i Principia ha ”ett öppet sinne”. Det första vi ser är att vi egentligen inte kan bevisa att den gäller. Detta då vi inte kan skapa en situation utan krafter som verkar. Det andra är att axiomet inte kan gälla i ett tomrum, vi måste kunna relatera rörelsen till något. Detta något är det vi kallar ett referenssystem, eller tröghetssystem (inertial system). Med andra ord N1 kräver att vi definierar ett tröghetssystem där N1 gäller, och som en följd gäller även de andra lagarna där. Hur kopplar man detta till Newton’s tro på ett absolut rum? Ser man till den tid då Newton levde var detta en självklarhet, vilket gjorde att han ansåg detta som självklart men N1 har dock inte detta som ett krav.

Det står klart att N1 är mycket viktigare än man egentligen undervisas. I majoriteten av böckerna som jag tittat i kommer man mycket snabbt till en matematisk formulering av N1:

och en kort diskussion om tröghetssystem. Se Generell fysikk[2] eller University Physics [3] som exempel. Den matematiska formulering gör det svårt att särskilja den från den vanligaste formuleringen av N2.

Newton’s andra lag

Newton’s andra lag, som följer den första formulerades:

Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur.

Law II: A change of motion is proportional to the motive force impressed and takes place along the straight line in which that force is impressed.

För att kunna tolka denna måste vi se till Newtons definitioner:

Definition I: Quantity of matter is a measure of matter that arises from its density and volyme jointly.

Definition II: Quantity of motion is a measure of motion that arises from the velocity and the quantity of matter jointly.

Definition IV: Impressed force is the action exerted on a body to change its state either of resting or of moving uniformly straight forward.

Vi ser att Newton använder sig av rörelsemängden (bevegelsemengde) när han talar om rörelsen, inte accelerationen. Dessutom är kraften som läggs på momentant och inte kontinuerlig (som för den sakens skull är ett special fall). Detta gör att en direkt översättning av N2 till modern matematisk formulering blir:

Vilket inte är den vanligaste formen att presentera N2. Generell fysikk [2], University Physics [3] använder istället:

Vilken introducerades av Euler i mitten av 1700-talet.

Det är notabelt att The Feynman lectures on Physics [4] och Fundamental University Physics [5] använder den förra.

Vad är fördelen? Det uppenbara är att man inte direkt kan se N1 som ett special fall av N2. Dessutom får man fördelen av att kunna använda sig av momentana krafter direkt och kan generalisera till kontinuerliga krafter. Att sedan rörelsemängden är en bevarad storhet gör inte situationen sämre.

Slutord.

Den tankeprocess som en kommentar och ett svar i en videoinspelning startade, fick mig dels till att gå tillbaka till ursprunget och dels att fundera på hur och vad det är vi undervisar i fysik. Föreläsaren är troligen inte den ende som inte fullt ut har förstått vad Newton’s lagar egentligen säger. Detta beror på att många läroböcker inte presenterar dom på ett korrekt sätt. Man väljer oftast ett sätt som kanske är det pedagogiskt riktiga men som gör att den djupa förståelsen för grundläggande principer blir lidande.

Med tanke på att det tog nästan 200 år efter publiceringen av Principia innan man fick en definitivt klargörande av det epistemologiska innehållet  i Newton’s första lag, så är det kanske inte så konstigt att vi använder oss av den utan att till fullo tagit till oss vad den säger. Det är lite av ”Shut up and calculate” och hur N1 behandlas, något som är synd då den är viktig i behandlingen av den speciella relativitetsteorin.

[1] I. Newton, Mathematical Principles of Natural Philosophy, I.B. Cohen & A Whitman, eds. (University of California Press, Berkely 1999)

[2] J.R. Lien& G. Løvhøiden, Generell fysikk for universiteter og høgskoler, bind 1 Mekanikk. (Universitetsforlaget, Oslo 2010)

[3] H. D. Young, & R. A. Freedman. Sears and Zemansky’s university physics. 13ed , (Pearson education, 2012)

[4] R.P. Feynman, R. B. Leighton, & M. L. Sands. The Feynman lectures on physics: Mainly mechanics, radiation, and heat. Vol. 1. (Addison-Wesley , 1963).

[5] M. Alonso & E. J. Finn. Fundamental university physics. Vol 1. (Addison-Wesley, 1968).

Topp