Livet, Universum, Fysik, Undervisning, Lärande och allting annat..

Fysik

Mina grundämnen – Bor

av 1. februar 2020 i Fysik, Kemi, The light side med Ingen kommentarer

Bor är liksom Be ett grundämne som inte skapas genom fusion i stjärnor, utan genom fotofisson och spallation. Det är essentiellt för växter och något vi använder bland annat i olika typer av glas.

För min del har jag erfarenhet av bor i form av bornitrid (BN). En material med intressanta egenskaper, där kombinationen av att vara islator samtidigt sm det leder värme bra gjort att man kan tillverka ugnar för att få atomstrålar. Enkelt uttryckt en burk med ett litet hål som man värmer upp med en wolfram eller tantal tråd snurrad runt. Man kan dock även skapa andra designer beroende på applikationen. För min del vad det olika försök med atomstrålar av Ba, Ca och Mg, med mål att skapa en ugn för Be. (Se inlägg om Be)

Mer än så är det inte att säga.

Mina Grundämnen – Beryllium

Beryllium är ett av de grundämnen som inte borde finnas, den stabila isotopen Be-9 kan inte bildas genom fusion och Be-8 skulle bestå av två alfa, vilket inte är en partikel-stabil isotop, kan inte bildas. Beryllium kan vi dock få genom att tyngre kärnor genomgår fotodissociation.

Men samtidigt är det bra då beryllium är mycket giftigt för oss. Men samtidigt har det en rad mycket bra egenskaper, lätt, starkt och leder värme mycket bra, vilket gör att det används inom rymdindustrin (med ordentliga säkerhetsföreskrifter). Men vi kan hitta beryllium i ex. golfklubbor (beryllium-brons) vilket gör att en golfklubba kan innehålla tillräckligt mycket för att ta livet av en mellanstor stad.

Det är inte bara beryllium utan även berylliumoxid har bra värmeledningsegenskaper, samtidigt som det är en isolator. Detta gjode att BeO användes som isolationsplattor för högeffek-transistorer i ex. gas-lasrar. Man kunde också hitta BeO i laserrör hos vissa tillverkare. Numera är wolfram det som är vanligast även om BeO förkommer.

Beryllium har i tillägg en intressant position i periodesystemet som gör det intressant får beräkningar av atomstrukturen. Men samtidigt är det en metall med hög smältpunkt varför det saknades experimentella data under 1980-talet. Det var vid den tiden jag började titta på möjligheten att få en atomstråle av Be med en population av meta-stabila (långlivade tillstånd) som har låg sannolikhet att deexiteras till grundtillståndet. Test av andra metaller med hög smältpunkt visade att det var möjligt att få en stråle. Populationen kunde ökas genom en urladdning i strålen. Så i princip var det möjligt. Problemet som kvarstod var att få till en laser i ultraviolett. Detta var ett problem som då inte var löst, det är det idag, så lösningen var att exitera med pulsade lasrar och använda rf för att studera tillstånden.

Planen var att använda en smalfrekvent kontinuerlig laser och använda den som oscillator (seed) i en pulsad förstärkare. Vi hade tillgång till pulsade lasrar som kunde pumpa förstärkaren, men var tvungna att se om det skulle gå att få till. En gammal blixlamps pumpad färgämneslaser användes för ett första test. Vi såg en liten förstärkning i en uppställning som var långt i från optimal, så det såg ut att vara möjligt.

Vi designade en ny uppställning och skaffade uppgifter om kostnaden. Totalt ca350000 kr i den dagens penningvärde och skrev en ansökan till NFR (forskningsrådet) vilket var inom den angivna ramen. Problemet var att beloppet var stort och skulle behandlas av FRN istället, med de hade en undre gräns på 500000kr. Så ansökan som kom högt upp på rangeringen hamnade utanför på grund av beloppet.

Vad hände sedan? Grupp en förlorade några medlemmar och andra satsade på andra projekt, så det kom ingen uppföljning nästa år och projeket dog ut…

Så beryllium är lite speciellt för mig då jag har haft bruk för det samtidigt som det är en påminnelse av ett projekt som aldrig blev..

Mina Grundämnen – Lithium

av 11. november 2019 i Fysik, Kemi, The light side med Ingen kommentarer

Litium är ett grundämne som skapades vid Big Bang och som inte kan bildas genom fusions-processer i stjärnor. Detta delar litium med beryllium och bor. Men genom att tyngre atomkärnor kan splittras eller spalleras av högenergi gamma elller partiklar så har det skapats litium efter Big Bang. Detta förklarar även varför litium är relativt lite förkommande i universum.

Litium är en alkali-metall och som sådan reaktiv, men det är långt i från lika reaktivt som natrium eller rubidium. Men metallen som är ganska mjuk måste förvaras i olja för att inte oxideras. Problemet är att litium har en densitet som är hälften av vatten (den flyter i vatten) vilket gör att den även måste hållas under ytan även i olja.

Mina erfarenheter av litium är i samband med charge-exchange, dvs soom ett medel att tillföra elektroner till positiva joner, genom att låta dessa passera genom en litium-gas. Det vill säga en cell som håller ca 400 grader celsius. Detta var den metod som brukas när jag jobbade vid University of Birmingham. I samband med flytten av utrustning till finland från Daresbury acceleratorn så hade dessa testats för radioaktivitet (under bakgrundssgrålningen) så var ganska mycket kontaminerat med LiO och LiOH, som HMS där inte visste hur de skulle hantera. Dock öppnade HMS-ansvarig kemilabbet och försvann varvid jag och en kollega spolade av utrustningen med varmt vatten tills allt skölts bort. egentligen olagligt med det är preskriberat nu.

Det inträffade dock en incident i Finland, när det behödes fyllas på med litium. Cellen var fortfarande varm när litiumet las in. Varvid det började brinna i cellen. Det enklaste var att kyla och få bort oxygen så det var bara att ta flytande nitrogen och skvätta på medan vakuum kammaren gjordes klar och en fortfarande glödande cell sattes på och trycket sänktes snabbt när pumparna gick igång. Det var på ett sätt inte det bästa sättet, så jag konstruerade en kammare där cellen kunde stoppas ner i flytande nitrogen om detta hände igen. Vad jag vet behövde den aldrig brukas….

Mina grundämnen: Nihonium

av 15. september 2019 i Fysik, Kemi, The light side med Ingen kommentarer

Grundämne 113 som syntetiserades på RIKEN 2004. Det rapporterades först från Dubna, men det japanska ansågs ha dokumenterat det bättre.
Jag har själv inte jobbat med det, men var på RIKEN i Wako-shi i slutet av 1990-talet och kände många av de som jobbade på projektet som syntetiserade Nihonium. (som Morita-sama)

Det har dock en ganska kul koppling för mig. Jag bodde i en lägenhet inte långt från järnvägsstationen i Wako-shi och gick varje dag till RIKEN. I samband med 50 års jubileet till RIKEN i Wako-shi, markerade man det genom att skapa en «väg» från järnvägsstationen och döpte den till Nihonium street. ( https://itaintmagic.riken.jp/whats-up-with-us/nihonium-street/ ). Till stora delar samma väg som jag gick till RIKEN på.
Jag hittade en video på YouTube där en person går från stationen till RIKEN längs Nihonium street. Så jag kunde över 20 år efter jag bodde där uppleva vägen igen. Det har skett mycket, huset där jag bodde är borta men jag mindes många av de hus, grönområden och broar som syns i videon ( https://www.youtube.com/watch?v=PYTZZ0E4jF8&vl=en-US ). Från det jag minns så startade min väg 4 minuter in i videon.

Så på det sättet kan jag säga att nihonium är ett av mina grundämnen.

Mina Grundämnen – Helium

Helium är det näst vanligaste grundämnet i universum. Trots det är det inte så vanligt på jorden, utan kan klassas som utrotningshotat (se: https://www.ntnu.no/blogger/fysikkforfakirer/2018/02/02/utrotningshotade-grundamnen/ ). Men detta beror främst på svårigheter att utvinna helium. Dock är det så att de tyngre grundämnena i jordens inre konstant genererar helium genom alfa-sönderfall.

Helium är ett grundämne som man observerade på solen(därav namnet, Helium efter Helios solguden i grekisk mytologi) innan man fick fram det på jorden. Solförmörkelsen 1868 gjorde att många observerade den gula He-linjen i coronan, Det är dock Janssen som fått äran, ibland med Lockyer som föreslog att det var ett nytt grundämne. De första som isolerade helium på jorden var Cleve och Langlet 1895.

Det främsta vetenskapliga bruket av helium är för att kyla ner supraledare, och det finns många artiklar som tar upp cryogenetiska användelser och studier av helium vid låga temperaturer. Jag har inte jobbat med flytande helium men har arbetat med det på andra sätt.

Helium spektret är ett av de experiment som jag fick göra som student och senare som handledare. Det intressanta med det spektret är att det är två spektra i ett. Singlett-He och Triplett-He, Parahelium och Ortohelium. Något som borde göra det enkelt att lösa, men så är inte fallet. Det går att göra grova beräkningar för att få fram energinivåerna, med systemet är ett tre-kroppa problem utan analytsika lösningar så olika approximationsmetoder måste användas. Men mina erfarenheter med detta visade sig komma till nytta på ett oväntat ställe.

Efter att jag försvarat min avhandling fick jag jobb vid University of Birmingham, UK, där ett experiment med laserspektroskopi på radioaktiva isotoper skulle flyttas till Finland. Vid den tiden var varma jonkällor vid acceleratorer i bruk på den flesta ställen. Men i Jyväskylä använde man sig av en gas-jet (He)(IGISOL) där producerade isotoper stoppades och tog åt sig elektroner i gasen, så att sedan skjutas ut i en gas-jet. Jeten som man får (om tryckskillnaden är stor nog) är supersonisk, dvs de enskilda atomerna är kall (låg spridning i hastighet) i alla fall om man har en fri expansion. Då var det många som sa att det inte skulle vara möjligt att få en smal hastighetetsfördelning som möjliggjorde laserspektroskopi. Det fanns studier som antydde att så var fallet.

Dock hade man i dessa studier använt elektriska fält (runt 500 V/cm) i expansionsvolumen. Då alla atomer rör sig med ungefär samma hastighet där så kommer ett fält att accelerera ev. joner (som skall studeras) och de kommer då att kollidera med långsammare He-atomer och tappa fart, vilket i sin tur ger en ökad hastighetsspridning. Lösningen var att minska fält-styrkan för att undvika detta.

Men det fanns ett problem till, med gas-jet, den är inte speciellt effektiv så allt som stoppas kan inte utnyttjas utan det kan sluta som atomer eller dubbelladdade joner. Här kommer heliums energinivåer in. Grundtillståndet ligger på runt -24eV, vilket gör att allt som stoppas i gasen borde sluta som dubbelladdade joner. Men det sker inte, något som man kan tro beror på föroreningar i gasen. För mycket och man tappar alla joner. Men Helium har två system Triplett-He som är metastabilt har en «jonisationsenergi» runt 4,7 eV. Men denna energinivå tillsäger att man bara får atomer. Så det handlar om en balansgång. Problemet är att man inte vet om det finns Triplett-He i gasen, det borde men vad jag vet så är det inte bekräftat än. Det finns två sätt, 1) obsertvera ljus får gas-kammaren och se efter triplett linjer eller 2) under exteremt rena förhållanden se efter en jon med massa 8, He-molekyl jonen. Även om Helium är en ädelgas så kan den bilda molekyler men då måste en eller båda av atomerna vara i triplett-tillståndet.

Så helium är ett av de grundämnen som jag har ett speciellt förhållande till.

Mina grundämnen-Väte/hydrogen

Väte är det lättaste grundämnet och består i sin enklaste form av en proton och en elektron. Det förekommer i tre olika isoptoper som har fått egna namn, Deuterium och Tritium (efter 2 och 3). Namnet Väte fick det då Ekeberg(1795) inte hittade ett bättre svenskt namn för hydrogenium (vattenbildare) som är det engelska namnet, Wasserstoff på tyska. Så på ett sätt är det en slump att Svenska (och Finska, Vety) avviker till viss del från andra språk.

Väte är det vanligaste grundämnet i universum och kan observeras på himlen, både med optiska teleskop (Balmer alfa- linjen i rött) och med radioteleskop (7 cm linjen).

Som atomfysiker är väte-spektret en av de första som man träffar på. Det är relativt enkelt att både studera och analysera. Samtidigt så används vätets olika spektrallinjer inom ex. astrofysiken. Men samtidigt är väte intressant för olika typer av precisionsmätningar. Att mäta vätespektret med hög precision var under min studietid något som genomfördes på de främsta laboratorierna. Och nya mer precisa värden av ex. Rydbergskonstanten kom med jämna mellanrum allt medan nya spektroskopska tekniker utvecklades. Även idag så finns ett stort intresse men då när det gäller mätningar på Anti-väte (en antiproton och positron) för att se om det finns någong skillnad mellan materia och anti-materia.

För min del så var vätespektret en av laboration som jag handledde som doktorand under flera år vid CTH. Den utrustning som vi hade där (en prisma spektrometer) hade inte den bästa upplösningen, men det finns idag relativt billiga spektrometrar där det är möjligt att se isotopskiftet mellan väte och deuterium.

Men det är inte bara inom atomfysik man kan utnyttja väte. Deuterium och protoner är ganska bra projektiler i kärnfysik experiment. I tillägg kan man detektera väte med radioteleskop, vilka idag är tillgängliga för amatörer. Så det finns en ganska stor potential i undervisningen.

Även om jag inte direkt jobbat med väte i forskningen, så är det ett grundämne som är där och som vi fortfarande utforskat fullt ut. Man har kanske observerat metallist väte nu. Men det behöver bekräftas, så historien är inte slut än.

«Mina» grundämnen!

I samband med periodesystemets år 2019, finner man olika typer av aktiviteter och artiklar om olika grundämnen. I Sverige har man tilldelat de olika universiteten olika grundämnen som de är faddrar för. I tillägg had det gjorts ett försök med Landskapsgrundämnen för att få upp kemiintresset.

Då jag varit aktiv inom både atom- och kärnfysik som forskare och genom detta kommit i kontakt med olika grundämnen, kan det vara naturligt(?) att skriva om mina erfarenheter med just dessa grundämnen. En del har jag bara(?) behandlat teoretiskt medan andra har haft en mer praktiskt betydelse, som material i utrustning eller som grundämne som jag deltagit i studier av. Totalt rör det sig om ett 30-tal grundämnen som jag haft kontakt med både bildligt och bokstavligen. Jag kommer att behandla grundämnena i olika inlägg och ska försöka begränsa mig till ett grundämne åt gången, men i vissa fall kan man behandla flera på en gång.

Does Santa Claus exist?

av 26. november 2018 i Fysik, Physics jokes, The light side med Ingen kommentarer

This is an very old text I wrote on Santa Claus, I think it is still readable..

Every year you get the same question from children, students and friends. Does Santa Claus exist?

Some people claim that there is no such figure; our image of the obese red-suited gentleman on a sleigh pulled by a number of reindeers is a creation of our own imagination. As “proof” for his non-existence they present a number of scientific facts!

Here I present one of the most important arguments for his non-existence.

The number of children (defined as a person under 18 years of age) on earth is about 2 billion. Even a reduction, since «only» Christians celebrate Christmas, to about 400 million children makes the task of delivering presents to each, overwhelming with about 130 million households (with 3 children on average) to visit during 31 hours. (from 6:00 pm Christmas eve to 6:00 am on Christmas day, taking into account time zones and assuming he travels from east to west). This implies that he have to visit about 1000 homes per second. During a millisecond, he must land the sleigh, locate the right presents, bring them and himself into the house, find the stockings and the tree, put the presents in place, go back to the sleigh and then to the next house. He is also supposed to have a small snack, for example cookies and milk, before leaving. Assuming a distance of 30 m, on average, between houses, he will cover a distance of about 3.9 million km in 31 hours (note that the real time of transportation is less as shown above) leading to an average speed of about 31 km/s. This speed will give rise to a tremendous air resistance, which will cause the reindeers to burst into flames. The process of roasting will start with a glowing red nose on Rudolph, before they all go up in flames. If we also take the number of presents into account, assuming that each child will get one present with a weight of 500 g, we find that the payload of the sleigh is about 200 million kg, which will give it a kinetic energy of 1.8 1017 J. This will not be possible for eight or nine reindeers, so he would probably need over 1 million thus increasing the payload further. And with this most people are satisfied in effectively killed the Santa myth. Oh ye little faithful.

But the arguments for the non-existence of Santa Claus are all based on Classical Physics. This flaw led me to believe that they, like Lord Kelvin, who had showed that the Earth couldn’t be billion of years old, had missed something. In this case Quantum Mechanics turned out to be a deus ex machina.

The question whether Santa Claus exists is similar to Schrödinger’s Cat or Wigner’s Friend. That is, Santa Claus must be a quantum mechanical entity on a macroscopic scale.

If we take a look on Santa’s characteristics, we find some evidence for his quantum character:

He knows when you have been good or been bad, therefore he must, in some way, be everywhere at any given moment in time!

And he can distribute Christmas gifts to 400 million children all over earth in just 31 hours. The reason must be that he spreads out over the world in a complex wave-function, thus being effectively in many places at once.

Oddly enough, this seems to have been known by parents a long time. Were you not told that if you stay up trying to see Santa, you wouldn’t get any presents? If Santa is observed, his wave-function collapses into the well known obese red-suited gentleman on a sleigh pulled by reindeer, and this stops him doing his job properly, and quite possibly annoys him, and all those who will not get their gifts, a great deal.

The presents that he distributes must also be of quantum mechanical character, but this doesn’t matter, because when you observe them, their wave-function collapse as well, enabling you to unwrap them and collapse their wave-functions further into one of those things you put on your wishing list or one of these thing that you didn’t want for Christmas. The great thing about this system is that you are guaranteed a surprise, because you never know precisely what the present is until you have unwrapped it. Which is exactly how it should be?

This explanation also eliminates the need for Santa to have reindeers or additional helpers, which should leave them to the things they prefer to do during Christmas.

There are other faithful gentlemen around the world working on the existence of Santa Claus.

We have the teleportation theory which explains how Santa can teleport himself with ease. One problem with this theory is time, the delivery must be done in one millisecond.

There also exists a String Claus theory, where Santa Claus is an 11 dimensional entity who moves in all dimensions without problems. However this theory has not been able to show any connection with the observed facts about Santa Claus yet.

So you see Santa Claus do exist, as a quantum mechanical entity. With this proof I am sure that I have saved Christmas for millions of children around the world, and hope that I will get some sort of gratitude from them. One penny each will be just fine, please send them to NTNU who will forward them to finance my project in building a Santa Claus detector. Don’t worry I will have it shut down during Christmas, as I do not want to ruin my chance to receive the Nobel Prize, when Santa is experimentally verified.

Pendeln fungerar också som en analogi för undervisning.

Man säger att den som inte lärt av historien kommer att upprepa den. Detta gör det intressant att läsa gamla läromedel, något som faktiskt kan vara ett intressant forskningsfält. Då med tanke på när olika saker kom in i undervisningen hur det presenteras och hur presentationen utvecklats.

Bland min samling av antikvariska läroböcker finns ett fint exempel av paret Petrini; Henrik och Gulli, Enklare fysiska experiment utgiven 1905. Men när man läser inledningen så slås man av hur mycket av detta nu kommer tillbaka. Pendeln slår tillbaka.  Många av råden är sådana som jag själv gett elever och studenter under mina år som undervisare(innan jag fick tag på boken 2005). Så inget nytt under solen.

 

Jag återger delar (i original) här och hoppas att ingen tar illa upp. Det är ett mycket talande tidsdokument.

Enklare fysiska experiment.

I. Allmänna anvisningar.

Inledning. År 1905 bildar en vändpunkt i det svenska undervisningsväsendets historia; ty från och med i år införes den experimentella metoden i undervisningen vid statens läroverk. Visserligen att börja med endast i två ämnen, fysik och kemi, men det är att hoppas, att de andra — närmast biologi och psykologi — skola följa efter i den mån de vetenskapliga metoderna i dem hinna lämpa sig för skolans behof. Häraf blir nu en omedelbar följd, att en exaktare undervisningsmetod måste vinna insteg äfven i alla andra undervisningsanstalter såsom i samtliga flickskolor, folkskoleseminarier och folkskolor. De sistnämnda hafva alldeles särskilda förutsättningar härför, i det att de hittills varit totalt befriade från den tidsödande språkundervisningen. Med en reform af religionsundervisningen kan i dem godt utrymme beredas för en verkligt uppfostrande och för lifvet fruktbärande undervisning i de exakta vetenskaperna matematik, mekanik, fysik, kemi och biologi jämte deras tekniska tillämpningar på industri och åkerbruk, just de områden, hvaråt de flesta af folkskolans alumner komma att ägna hela sitt återstående lif.

Men hvarifrån taga lärare till denna undervisning ?

Hvad först de fullständiga allmänna läroverken beträffar, så torde det öfverallt finnas lektorer som äro fullt kompetenta att anordna en sådan undervisning, och det vore därför önskvärdt, om dessa nu ville åtaga sig densamma i fjärde och femte klasserna för att i realskolan sätta igång en modärn experimentell undervisning, som hvilar på elevernas laboratorieöfningar Läroverksrådet T. Moll har i särskilda broschyrer lämnat anvisningar på dels huru lokalerna böra inredas och dels huru undervisningen lämpligen kan anordnas, anvisningar som torde vara i allmänhet tillräckliga för lärarna i dessa skolor. Men i realskolor, samskolor, flickskolor, folkskoleseminarier och folkskolor torde det ännu finnas lärare och lärarinnor som själfva aldrig idkat laborationsöfningar vid universitet eller annorstädes och därför känna behof af en något utförligare ledning vid laborationsöfningarnas anordnande.det är hufvudsakligen för dem, som denna bok är afsedd.

Den experimentella undervisningen bör naturligtvis börja redan i småskolan — såsom den faktiskt gör i matematik, då barnen få räkna på kulor — men sedan ej häller afbrytas. Mätningar och vägningar böra göras så tidigt som möjligt och den experimentella geometrin och fysiken böra sättas i omedelbart samband med undervisningen i papp-, trä- och metall-slöjd. De barn som äro i tillfälle att börja tidigt med laborationer kunna få experiment och konstruktionsöfningar mer varierade än som här visas, de som börja senare få åtnöja sig med ett mindre urval.

Hvarje elev bör vara försedd med två tämligen tjocka anteckningsböcker. Den ena användes som kladd under experimenten ; i den andra renskrifves experimentet, hvarefter den lämnas att genomses och rättas af läraren. Härvid iakttages, att texten förekommer endast på hvaran nan sida, under det eleven gör på den andra sidan en så tydlig och vacker ritning som möjligt af de experimentella anordningarna. Läraren bör undvika att i början gifva några formulär eller andra dylika förhållningsregler för barnen att gå efter. Det må vara nog med följande enkla regel:

»Skrif och rita så tydligt, att en kamrat som ej har gjort experimentet skulle kunna göra efter hvad du har gjort, endast genom att se din beskrifning. »

Eleven bör själf få försöka sig på att dra slutsatser ur sina resultat och eventuellt härleda en lag. Först vid rättandet af uppsatsen bör läraren visa huru man plägar exaktare formulera den af eleven funna lagen och lära honom att göra en beräkning i en särskild kolumn i tabellen af kvoten ( » proportionella »), produkten ( »omvändt proportionella») etc. af de funna storheterna eller deras kvadrater, kuber m. Om det visar sig att man i denna kolumn får ett tal som är ungefär konstant, tages medelvärdet af de erhållna talen. Äfven bör eleven tillhållas att aktgifva på felkällor. Hvarje bestämning bör göras minst två gånger, så att eleven får tillfälle att uppskatta felets storlek och förstå hvarför han bör undvika att sedan vid beräkningarnataga med för många decimaler. Efter någon tid bör han vänja sig vid att beräkna felet i uppskattningarna i procent af totala värdet.

De olika experimentens ordning sins emellan bör ej bestämmas med någon pedantisk hänsyn till ämnets natur annat än där detta är absolut nödvändigt, nämligen då ett experiment ovillkorligen förutsätter kännedom om ett annat. Man får då ständigt fritt val mellan experiment tillhörande de mest skilda områden, hvarigenom möjliggöres att experimenten kunna ordnas efter deras lättfattlighet, de experimentella svårigheterna, och de matematiska förutsättningarna. Denna decentralisation är äfven af nytta för eleven, i det att han får vänja sig vid att bli kastad »in medias res» och omedelbart gripa sig an med en ny sak. Härigenom blir hans bildning mer aktuell och kommer ej, såsom nu ofta är fallet, att bestå blott i ett vetande, som är så väl sorteradt i särskilda fack, att han ej kan tillämpa detsamma på ett särskildt fall, förrän han lyckats passa in detta under en lämplig rubrik. Däremot bör man pa lektionstimmarna hänvisa till experimenten och sammanfatta hvad eleverna därvid lärt sig.

Det är synnerligen uppfostrande för eleven att vänja sig vid att ständigt kunna reda sig med de enklaste och de mest varierande rent tillfälliga hjälpmedel. Ju mer af egen uppfinningsförmåga han nedlägger vid arrangerandet af experimentet, dess bättre. Kan han tilläfventyrs hitta på en egen metod att bestämma en sak, så må han försöka densamma och sedan pröfva den genom att göra om bestämningen efter en annan metod. Enklare apparater böra så vidt möjligt förfärdigas af eleverna själfva, och skolan får därigenom så småningom ett tillräckligt antal exemplar af dem. Man bör hällre lägga an på att med stativ, glasrör, korkar, kautschukslangar, glasbägare,

millimeterpapper etc. sammansätta behöfliga apparater än att köpa dem färdiga, en apparat för hvart experiment. Frånsedt prisbilligheten äro sålunda anordnade experiment de mest uppfostrande, helst de gifva eleven en eggelse att hemma experimentera på egen hand.

 Om läraren har tillräckligt material för att låta alla barnen göra samma experiment samtidigt, så kan han naturligtvis sköta en större afdelning, än om olika lag skola göra olika experiment. I förra fallet kan han låta eleverna förena sig i grupper om två och två som göra experimentet tillsammans. En stor fördel härmed är, att läraren kan sammanställa de olika gruppernas resultat. Vid början af lektionen ger han några korta anvisningar på 5 a 10 min., hvarefter eleverna få gå att själfva framtaga hvad de behöfva. Är klassen så stor, att 30 st. arbeta samtidigt vore det godt, om någon äldre elev (från en annan klass) ville åtaga sig att vara amanuens och hjälpa till. Men i en skola med ringa tillgångar bör läraren, så länge han är ovan, ej taga mer än 16 elever på en gång. Dessa ordnas i fyra grupper om fyra stycken, och hvarje lag för sitt särskilda experiment. Hållas dessa laborationer t. ex. en gång i veckan, behöfver läraren sålunda endast omkring en gång i månaden tänka ut nya experiment, fyra stycken, och afprofva dem. Om man blott lyckas öfvervinna en viss misstro till sig själf och griper sig an med att anordna experimenten, skall man till sin förvåning finna huru ytterligt ringa hjälpmedel man kan reda sig.

Men redan efter en termin bör läraren hafva vunnit tillräcklig erfarenhet och eleverna blifvit tillräckligt hemtama på laboratoriet för att han skall kunna fördela dem i grupper två och två, äfven om olika lag skola göra olika experiment; i detta fall bör den ena hälften af afdelningen komma 1/2 timme senare än den andra.

 

En annan rolig detalj är att det exemplar jag har är dedikerad av författarna till Svante Arrhenius.

Ljud och hörsel

av 21. april 2018 i Fysik, Undervisning med Ingen kommentarer

Av våra sinnen är troligen hörsel den mest fantastiska av flera andelningar. Dels för det område som det täcker, när det gäller intensitet så rör det sig om 12 tio-potenser och frekvenser från ca 50 Hz till över 20000 Hz (för unga innan hörsel skador slår in). Men också utvecklingen av örat som egentligen består av käk-ben som omvandlats genom år miljonerna.

Samtidigt så är den exakta beskrivningen av hur örat egentligen fungerar inte helt klar än.

Vi känner heller inte helt till hur störande ljud påverkar kroppen. Att oönskat ljud kan ge upphov till stress och stressreaktioner vet vi men vi vet inte hur detta egentligen sker. Detta är ett miljöproblem som tagit på allvar länge men då bara de direkta fysiska skadorna. Detta är något vi bör vara uppmärksamma på.

Ljud är något som alla har ett förhållande till och som faktiskt är ganska lätt att utforska själva.

Jag har skrivit ett häfte som beskriver ett antal olka demonstrationer som man kan göra själv [demoljud].

Ett exempel :

”Binaural” hörande

Den mänskliga hörseln kan bestämma positionen hos en ljudkälla genom den fördröjning mellan ankomsttiden av ljudet till öronen. Detta kan man visa genom att hålla dom båda ändarna på en slang mot öronen. Om någon knackar lätt i mitten av slangen kommer ljudet samtidigt fram till öronen. Hörseln är så känslig att den kan känna av om man knackar ett par cm från mitten, detta motsvarar ca 10 -4 s. I stället för att tala om en tidsfördröjning så kan man tala om en fasskillnad. Denna fasskillnad fungerar bäst för låga frekvenser, där våglängden är stor. För höga frekvenser så är det intensitets skillnaden mellan öronen som ger positionen.

Försöket demonstrerar på ett enkelt(!) sätt hur vi kan veta varifrån ljudet kommer från. Men samtidigt så kan vi använda detta till att lura örat, något som görs med stereo där både tid, itensites och fasskillnader använd för att skapa ljudillusioner.

Det finns flera experiment i häftet som jag kanske kommer att utöka när jag får tid eller då någon som vill utöka det dyker upp…

Topp