Ukategorisert
Grønne energivalg: Vindkraft under lupen [blog post in Norwegian]
En rapport fra FNs Ressurspanel evaluerer miljøbelastningene ved å produsere elektrisitet fra ulike energikilder. Jeg er medredaktør av rapporten og hovedforfatter av kapittelet om vindkraft. I denne kronikken, tidligere publisert på Naturpress, deler jeg noe av innsikten som rapporten gir, pluss egne refleksjoner på miljøaspekter ved vindkraft.
Vindturbiner drives av energi hentet fra luft i bevegelse – altså vind. I grunnleggende kontrast til uttømmende energilagre av fossil olje og gass, er vind en fornybar energiflyt. Og enda viktigere: den er tilgjengelig i rikelige mengder rundt om på kloden. Likevel er ikke vindkraft fri for effekter på miljøet.
Ressurspanelets tilnærming
Rapporten fra Ressurspanelet gjør omfattende livsløpsanalyser for å kvantifisere en rekke typer miljøpåvirkninger, inkludert klimaendringer, miljøgifter og luftforurensing. Livsløpsanalyser er analyser som tar hensyn til miljøpåvirkninger som skjer under hele livsløpet (bygging, drift og avfallshåndtering) og hele verdikjeder (for eksempel hele kjeden fra utvinning av materialer til produksjon av sluttkomponenter).
Samtidig vurderte Ressurspanelet det slik at enkelte typer miljøpåvirkninger i praksis ikke lar seg kvantifisere (måle), ettersom det ikke finnes alminnelig aksepterte målemetoder. I slike tilfeller gir rapporten kvalitative drøftinger av miljøpåvirkningene. Eksempler på ikke-målbare effekter av vindkraft inkluderer fugledødelighet og visuelle inntrykk på landskapet.
Stort potensial for å redusere forurensing
I et livsløpsperspektiv står vindkraft bak skadelige utslipp, som alle andre former for kraftproduksjon. Men hvor betydelige er utslippene? Og hvordan ser utslippsregnskapet ut for vindkraft vis-à-vis kraft fra fossile brensler? Her er svarene sammensatte, men ett resultat er uansett slående: Vindkraft oppviser glimrende resultater når det gjelder alle typer forurensningsrelaterte miljøbelastninger. Her utkonkurrerer vind den globale elektrisitetsmiksen i størrelsesorden en til to ganger.

Overview of life cycle impacts for different power generation options. Source: Hertwich et al. (eds.). Green Energy Choices. Summary For Policy Makers. UNEP International Resource Panel. The summary report is available here.
Dette går fram av figuren over som viser en sammenlikning av de målbare miljøbelastningene forbundet med forskjellige kraftproduksjonsteknologier. For eksempel ser man at utslipp av drivhusgasser fra vindkraft bare utgjør 2 % av det man får fra gjennomsnittlig global elektrisitet. Likedan utgjør skadene fra vindkraft på menneskelig helse og økosystemer (grunnet luftforurensing eller forurensing av jord og vann) bare 4-5 prosent av det man får fra global elektrisitet. Vindkraft krever mer stål og sement enn en del andre teknologier, men kommer altså likevel ut som en miljøvinner når vi ser på utslippsrelaterte miljøbelastninger.
Dødelighet blant fugler og flaggermus
Prøv å google ordene «wind turbine» og «birds», og du blir fortalt at vindturbiner er en alvorlig trussel mot fugler. Eller du blir fortalt at det er en myte at vindturbiner utgjør en betydelig trussel mot fugler. Det avhenger av hvilken nettside du klikker på.
Det er sikkert mange årsaker til at oppfatningene om vindturbiner og fugledød er så ulike. Det er likevel klart at én forklaring ligger i at mens noen ser på det totale antallet fugler som er drept av vindturbiner og sammenlikner det med tallet på de som blir drept av bygninger, strømkabler og katter, fokuserer andre på effekten på lokale fuglebestander. I det første tilfellet tenderer man til å sette vindkraft i et gunstigere lys, fordi – og det er sant – blant alle mulige kilder til fugledød utgjør vindkraft bare en liten del. I det andre perspektivet kommer vindkraft mindre fordelaktig ut, fordi – og det stemmer også – vindparker kan skade lokale fuglebestander som er små eller sårbare, eller som er (ekstra) verdsatt av mennesker. Vindturbiner er tilbøyelige til å drepe andre typer fugler (ørner, for eksempel) enn bygninger (eksempelvis sangfugler).
Det finnes tiltak som reduserer risikoen for fuglekollisjoner, og det er oppmuntrende. Varsom arealplanlegging og optimal plassering av vindparker kan redusere negative effekter på fuglelivet.
Ikke å forglemme, det finnes også en annen (og veldig annerledes) type flyvende dyr, flaggermus. Av grunner man ikke helt forstår ser det ut som noen flaggermusarter tiltrekkes av vindmøller – og utsetter seg dermed for økt risiko for å bli skadet eller drept av roterende vingeblader. I noen regioner er man bekymret for at vindturbiner har blitt eller er i ferd med å bli en alvorlig dødstrussel for flaggermus.
Arealbruk
Hvor stort areal legger en vindpark beslag på? Også her er oppfatningene svært delte. For ressurspanelrapporten valgte vi bare å telle opp områdene som rent faktisk okkuperes av vindmøllene og disses fundamenter, samt tilførselsveier. Hovedgrunnen til dette valget er at rommet mellom turbinene kan brukes av mennesker til andre formål, eller av landbasert dyre- og planteliv. En vindpark kan, med noen begrensninger, sameksistere med jorddyrking, beitende dyr eller dyrevilt. Det samme kan ikke sies om arealer brukt til kullgruver eller dyrking av vekster til bioenergi.
Gitt utgangspunktet som ble tatt i rapporten, er den livsløpsbaserte arealbruken knyttet til vindkraft svært liten sammenliknet med konkurrerende teknologier, som figuren viser. Samtidig, og det blir drøftet i rapporten, kan man se et mye større område som påvirket, særlig fordi vindturbiner er høye strukturer og kan være visuelt dominerende i landskap. Bekymringer om forringing av naturskjønne omgivelser kan være legitime, og bør ikke avvises som et “ikke-i-min-bakgård“-problem.
Utfasing av fossil kraft er en forutsetning for utslippsreduksjoner
Livsløpsanalyser og annen litteratur gjør ofte den antakelsen – tydelig eller underforstått – at én enhet vindkraft levert betyr én enhet fossilbasert kraft unngått. For meg er ikke det opplagt riktig, eller rimelig.
Foreløpig er jeg ikke i stand til å se grunnlag for en a priori antakelse om at vindkraft automatisk erstatter fossilkraft én-til-én, ei heller er jeg i stand til å se støtte for en slik antakelse i energistatistikk. Det virker som at det i en del litteratur foreligger et premiss om at vindkraft konkurrerer med fossil kraft alene. Premisset er kunstig, fordi vindkraft også kan brukes til å tilfredsstille nye eller økte behov, og fordi vindkraft også kan konkurrere med andre fornybare energikilder eller med energieffektivitet.
Ressurspanelrapporten viser at vindkraft har et stort potensial for å redusere utslipp av drivhusgasser og annen forurensing. Realiseringen av dette potensialet hviler på at vindkraft faktisk fører til en utfasing av fossil kraft. Og dette er igjen avhengig av at klimapolitikken som føres er virkningsfull nok.
Rapporten, inkludert kapittelet om vindkraft, kan lastes ned fra: http://www.unep.org/resourcepanel.
Green energy choices: Wind power under the microscope
A new report of the International Resource Panel evaluates the relative environmental merits of power generation options. I am co-editor of the report and lead author of the chapter on wind power. In this blog post, I share some insights from the report as well as own reflections on environmental aspects of wind power.
Wind turbines are driven by the energy possessed by moving air – that is, wind. In fundamental contrast to exhaustible energy stocks like oil and gas, wind is a renewable energy flow. What is more, it is available in ample quantities around the globe. Still, wind power deployment is not without environmental concerns.
Assessment approach
The International Resource Panel (IRP) report takes a two-fold approach to assessing the impacts and resource requirements of power supply:
First, comprehensive life cycle assessments are conducted to quantify environmental impacts, such as climate change, toxic effects and air pollution. Second, some impact types are essentially non-quantifiable, as agreed-upon methods for quantification do not exist. The report addresses such impact types by means of a qualitative discussion. Examples of non-quantifiable effects of wind power include bird mortality and visual intrusion in landscapes.
Great potential for reducing pollution

Overview of life cycle impacts for different power generation options. Source: Hertwich et al. (eds.). Green Energy Choices. Summary For Policy Makers. UNEP International Resource Panel. The summary report is available here.
In a life-cycle perspective, wind power causes harmful emissions, just as does any other way of power generation. Looking at the life cycle assessment results of the IRP report, one result is striking: Wind power shows excellent performance by all the assessed impact types caused by pollution, outperforming the global electricity mix by one or two orders of magnitude.
This is evident from the figure above, showing a comparison of estimated impacts for different technologies. (I am afraid image size is small. You may click on image to increase size somewhat, or see the IRP summary report.) Observe, for example, that the greenhouse gas emissions of wind power amount to only 2% of that of the average global electricity. Similarly, wind power causes adverse effects on human and ecosystem health (due to air pollution or toxic contamination of soil and water) corresponding to 4-5% of that of the global electricity.
Bird and bat fatalities
Try a Google search for “wind”, “birds” and “myth”, and you will find websites portraying wind turbines as a major threat to birds. And you will find websites presenting it as a myth that wind turbines is a significant threat to birds.
Such contrasting perceptions probably come about for a variety of reasons. It is clear though, that one explanation is that some people look at the total number of birds killed by wind turbines in comparison to buildings, transmission lines and cats, while other people focus on effects on local bird populations. The former perspective tends to put wind power in a more favourable light, because – true – in the aggregate wind power is only a minor bird-killer compared to other man-made structures. The latter perspective tends to put wind power in a less favourable light, because – also true – wind farms can do harm to local bird populations that are small or vulnerable, or valued by humans. Wind turbines tend to kill different types of birds (for example, eagles) than buildings (for example, songbirds).
Measures exist for reducing the risk of bird collisions and have demonstrated some success, which is encouraging. Perhaps in particular, careful spatial planning and optimized wind farm siting can reduce negative effects on birdlife.
Not to forget, there is also another (and very different) type of flying animals, bats. For reasons not entirely understood, some bat species seem to be attracted to wind turbines – putting the bats at increased risk of injury or death caused by moving turbine blades. There are concerns that wind turbines have become or are about to become a serious mortality factor for bats in some regions.
Land use
How much land area does a wind farm occupy? Here also, views differ greatly. For the IRP report, a choice was made to count only the area used exclusively by turbines with foundations, and access roads. The basic reason for this choice is that the spacing between turbines can be used by humans for other purposes or by terrestrial wildlife. A wind farm area can, within some limits, coexist with agricultural crops, animal grazing or wildlife. The same cannot be said for the land used by open-pit coal mines or bioenergy crops.
With the approach used in the IRP report, the life cycle land use associated with wind power is very small compared with competing technologies, as is evident from the overview of impacts in the figure above. However, as is discussed in the report, a much larger area could also be regarded as impacted, especially because wind turbines are tall structures that may be visually dominating in landscapes. Concerns about degradation of scenic attributes of landscapes can be legitimate, and should not generally be dismissed as a “not in my back-yard”-type problem.
Real benefits arise when worse alternatives are displaced
Life cycle assessments and other literature often assume, explicitly or implicitly, that one unit of wind power delivered implies one unit of fossil fuel-based power avoided. I have some reservations concerning this.
First, I am currently not able to see a basis for a priori assumptions that wind power deployment automatically reduces fossil fuel power use on a one-to-one basis. Second, it appears to be an artificial premise that wind power competes solely with fossil fuel power. It could also be seen as facilitating growth in electricity demand or as competing with other renewable options or with energy efficiency, especially in a future-oriented context assuming high carbon prices.
The IRP report shows that wind power has a great potential for reducing greenhouse gas emissions and other pollution. At the same time, realizing this potential depends on the degree to which fossil fuels are displaced. This again depends on energy and climate policies whose combined effect is to avoid fossil fuel use.
The full report, including the chapter on wind power, is available here. A summary report is available here. Other materials related to the report are available from http://www.unep.org/resourcepanel. A Norwegian version of this blog post is here.
Benefits of variable renewables outweigh costs
Replacing fossil fuel power with variable wind and solar power means that more energy storage and power transmission capabilities are necessary. Despite this, we find large climate benefits and a range of other pollution benefits of switching to renewables.
The variability of wind and solar power makes their large-scale integration into power systems challenging. The wind does not blow on demand. The sun does not always shine. Still, power demand must be met at all times and for all locations. Our new study, lead-authored by one of our Master’s students last year, Peter Berrill, assesses the environmental impacts of high penetration renewable energy scenarios for Europe. By bringing together life cycle assessment (LCA) and power grid modelling, the study is able to capture both life cycle effects and variability issues in one single analysis.
While increased needs to store energy and to transfer electricity over large distances cause additional impacts in systems dominated by renewables, these impacts are small in comparison to the benefits of deploying renewables.
Former estimates present an incomplete picture
Results of LCAs are frequently used to compare the environmental performance of electricity generation options. One example is this graphic from the IPCC, juxtaposing life cycle emission estimates for different power generation options. However, these estimates do not consider impacts associated with accommodating large shares of variable supply in electricity networks.
Considering both life cycle effects and variability issues in one coherent assessment involves a substantial methods and data challenge. The basic reason for this is that impacts occurring as a result of variability is a property of whole systems, not of individual technologies.
How so? Well, we know that the wind does not always blow. This constitutes a challenge, because customer demand for electricity must always be satisfied. Now, we can deal with the challenge in a number of ways. We can expand transmission grids, to exploit the fact that the wind (almost) always blows somewhere. We can combine wind and solar deployment to reduce overall fluctuations. We can invest in energy storage, such as batteries or pumped hydro. We can invest in surplus capacity of flexible natural gas power, ready to be used when needed. Or – as will be the case in the real world – we can combine these measures in one way or another. Then, the impacts that arise as a result of variability depend on how all technologies are combined. The impacts cannot be determined by considering any single technology in isolation.
Our attempt to get a fuller picture
In order to capture both life cycle effects and variability effects, you need both a power system model capable of simulating the operation of entire power systems, and an LCA model capable of estimating life cycle impacts of different power system layouts, and to combine the two in a sound manner.
Our study does exactly this. First, 44 scenarios describing power system configurations for Europe in 2050 were generated by a power system optimization model, REMix, operated by DLR in Germany. Next, the scenarios were examined using NTNU’s prospective LCA modelling framework, THEMIS. This combination allows us to present the first LCA of entire electricity systems while taking into account the effects of variability on storage and transmission requirements, and losses.
Findings: Large climate benefits
The findings indicate large climate benefits and a range of other emissions reduction benefits of switching to renewables. Adopting variable renewables on a large scale does lead to additional storage and transmission capacity requirements – and hence additional environmental impacts – but these are not large enough to significantly undermine the benefits of renewable power displacing fossil fuel-based power.
Another finding is that solar photovoltaic (PV) power tends to induce larger impacts than wind power, for two main reasons. First, the supply chains of solar power plants generally involve more emissions-intensive material processing and manufacturing activities than that of wind power plants. Second, as wind power plants on average operate closer to their full capacity, systems dominated by wind power show lower needs for storage than solar-dominated systems.
Our findings can help to alleviate fears that large-scale adoptions of variable renewable energy will cause large unintended emissions. At the same time, it is worthwhile to keep in mind that simplifications and assumptions were necessary, and this contributed to uncertainty. Some of the simplifications and assumptions may be replaced by more sophisticated modelling or better data in the future.
The study is reported in Environmental Research Letters.
Recent Comments