Andrii Shalaginov
Bakgrunn og aktiviteter
Dr. Andrii Shalaginov is working as an Associate Professor (part-time) at the Department of Information Security and Communication Technology (IIK), he is a member of the NTNU Digital Forensics group and the NTNU Malware Lab. Andrii's expertise lies in the development of new methods to protect against cybersecurity threats using advanced data analytics. The main aspect is the intelligent processing of data pieces that further can be used for building AI models to defend infrastructure as well as preserving digital pieces of evidence.
Current Research Interensts
- Malware Analysis
- Digital Forensics
- Big Data Analytics
- Machine Learning
- Internet of Things
Background
Andrii obtained his PhD in Information Security in 2018 from NTNU. This research project included the development and proof-of-concept demonstration of the advanced Neuro-Fuzzy method for Big Data problems in Digital Forensics applications. One of the contributions received aware from AI Journal. By today, Andrii holds his MSc degree in Information Security (Digital Forensics track) from Gjøvik University College (Norway), MSc in System Design from Kyiv Polytechnic Institute (Ukraine) and BSc in Information Technology from Kyiv Polytechnic Institute (Ukraine). Moreover, Andrii is experienced in system architecture and software engineering. In 2010-2011 he worked with Samsung R&D Center on Human-Computer Interaction Projects on embedded devices for the Android platform.
Project Work
- Digital forensics: evidence analysis via intelligent systems and practices, COST Action CA17124, a nominated representative from Norway, WP7 ECR Vice-Leader, 2018-current
- ArsForensica, NTNU; WP2 demonstrator, 2015-current
- Malware on copyright-infringing websites, UNICRI/EUIPO; security consultant, 2017.
- SuPLight, NTNU; WP3 editor, WP6 software developer and demonstrator, 2011-2014.
- Large-Scale Multinomial Malware Classification, NTNU, Project Leader, 2015-current.
- Hansken, NTNU, system architect, 2016-current
Course responsible / Teaching
- IMT4133 - Data Science for Security and Forensics (course responsible)
- IMT4114 - Introduction to Digital Forensics (course responsible)
Selected Invited Talks
- Future Smart Cities Policing: Opportunities and Challenges, Interpol, Singapore, 2018.
- Malware on selected suspected copyright-infringing websites, European Union Agency for Law Enforcement Training (CEPOL), 2017.
- Machine Learning-Aided Malware Analysis, NorCERT Security Forum - NTNU Malware Forum, 2017.
Other activities
- Member of "Impact of Technology Expert Group", Observatory Expert Groups, European Union Intellectual Property Office, 2019.
- Andrii is part of the NTNU team that won 1st place at Interpol Thinkathon on Future Policing in Smart Cities (PolitiForum) (2018)
- Chair of "International Workshop on Big Data Analytic for Cyber Crime Investigation and Prevention" 2017, 2018
- Co-chair of "NTNU Malware Forum" (2017-current)
- COINS steering committee member and student representative (2015-2017)
- Member of Machine Intelligence Research Labs (MIR Labs) (2018-current)
- Member of International Neural Network Society (INNS) (2017-current)
- Member of Institute of Electrical and Electronics Engineers (IEEE) (2018-current).
Vitenskapelig, faglig og kunstnerisk arbeid
Et utvalg av nyere tidsskriftspublikasjoner, kunstneriske produksjoner, bok, inklusiv bokdeler og rapport-del. Se alle publikasjoner i databasen
Tidsskriftspublikasjoner
- (2021) BCFL logging: An approach to acquire and preserve admissible digital forensics evidence in cloud ecosystem. Future generations computer systems. vol. 122.
- (2021) Deep Graph neural network-based spammer detection under the perspective of heterogeneous cyberspace. Future generations computer systems. vol. 117.
- (2021) Study of Blacklisted Malicious Domains from a Microsoft Windows End-user Perspective: Is It Safe Behind the Wall?. Norsk Informasjonssikkerhetskonferanse (NISK).
- (2021) Securing resource-constrained iot nodes: Towards intelligent microcontroller-based attack detection in distributed smart applications. Future Internet. vol. 13 (11).
- (2020) Intelligent mobile malware detection using permission requests and API calls. Future generations computer systems. vol. 107.
- (2020) Decentralized Self-Enforcing Trust Management System for Social Internet of Things. IEEE Internet of Things Journal. vol. 7 (4).
- (2020) PACER: Platform for Android Malware Classification, Performance Evaluation and Threat Reporting. Future Internet. vol. 12 (4).
- (2020) RESPOnSE—A Framework for Enforcing Risk-Aware Security Policies in Constrained Dynamic Environments. Sensors. vol. 20 (10).
- (2020) Smart Policing for a Smart World Opportunities, Challenges and Way Forward. Advances in Intelligent Systems and Computing.
- (2019) Predicting likelihood of legitimate data loss in email DLP. Future generations computer systems.
- (2018) Comparing Open Source Search Engine Functionality, Efficiency and Effectiveness with Respect to Digital Forensic Search. Norsk Informasjonssikkerhetskonferanse (NISK). vol. 11.
- (2017) Fuzzy logic model for digital forensics: A trade-off between accuracy, complexity and interpretability. IJCAI International Joint Conference on Artificial Intelligence.
- (2017) Big data analytics by automated generation of fuzzy rules for Network Forensics Readiness. Applied Soft Computing. vol. 52.
- (2016) Data-driven Approach to Information Sharing using Data Fusion and Machine Learning for Intrusion Detection. Norsk Informasjonssikkerhetskonferanse (NISK). vol. 2016.
- (2016) Memory access patterns for malware detection. Norsk Informasjonssikkerhetskonferanse (NISK). vol. 2016.
- (2016) Intelligent generation of fuzzy rules for network firewalls based on the analysis of large-scale network traffic dumps. International Journal of Hybrid Intelligent Systems. vol. 13 (3-4).
- (2016) Multinomial classification of web attacks using improved fuzzy rules learning by Neuro-Fuzzy. International Journal of Hybrid Intelligent Systems. vol. 13 (1).
- (2016) Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering. vol. 10 (4).
- (2016) Cyber security risk assessment of a DDoS attack. Lecture Notes in Computer Science (LNCS). vol. 9866.
Bøker
- (2021) Malware Analysis Using Artificial Intelligence and Deep Learning. Springer. 2021. ISBN 978-3-030-62581-8.