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ABSTRACT  
Statistical models used to investigate research questions in behavioral genetics often require large amounts 
of data. This paper introduces some key concepts of Bayesian analysis and illustrates how these methods 
can aid model estimation when the data does not provide enough information to reliably answer research 
questions. The use of informative prior distributions is discussed as a method of incorporating information 
from other sources than the data at hand. The procedure is illustrated with an ACE model decomposition of 
the variance of antisocial personality disorder. The data originates from the Norwegian Twin Registry, and 
includes adult twins assessed with the Structured Interview for DSM Personality (SIDP-IV). Inclusion of 
prior information lead to a shift with respect to conclusions about the presence of shared environmental 
effects compared to a traditional analysis. Small and medium sized studies should consider use of prior 
information to aid estimation of population parameters. 
 
This is an open access article distributed under the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original work is properly cited. 
 
 

INTRODUCTION 
 
In behavioral genetics, it is often of interest to investi-
gate the relative genetic and environmental contribu-
tion to phenotypic variance. These analyses have been 
valuable in understanding the etiological basis of a 
variety of behavioral traits such as cognitive abilities, 
psychopathology and personality (Plomin et al., 2013). 
 Twin designs are one of the major methods used for 
disentangling the variance components attributable to 
genetics and environments (Plomin et al., 2013). Be-
cause it is known that monozygotic (MZ) twins share 
all their genes whereas dizygotic (DZ) twins on average 
share half of their genes, genetic contributions to a 
phenotype can be investigated by assuming equal 
environmental influences in MZ twins and in DZ twins 
(Plomin et al., 2013). Decades of research has accumu-
lated substantial evidence regarding the influence of 
genetics and environment in a variety of traits. A recent 
meta-analysis (Polderman et al., 2015) summarized a 
majority of the traits that have been studied using the 
classical twin design. In total they investigated close to 
18000 traits based on approximately 15 million twin 
pairs. This makes clear that in many situations, resear-
chers already possess information about the contribu-
tion of genetics and environment in the phenotypes 
under study. 
 Bayesian methods allow such prior information to 
be incorporated in the analysis and thereby combine 
historical information with new data. In small samples 
and/or complex models with many parameters, there is 
often not enough data to provide estimates of satis-
factory precision. When the available data is not a 
satisfactory information source, incorporation of prior 
information can aid precision in model estimation. 
 Bayesian approaches to genetic models have been 
described by others (Eaves & Erkanli, 2003; Eaves et 

al., 2005; van den Berg et al., 2006a; van den Berg et 
al., 2006b). None of these papers explicitly utilized 
prior information. The aim of the current paper is to 
give a practical example on how prior information can 
be incorporated in analyses using Bayesian methods, 
and discuss some methodological benefits and limita-
tions. The method will be described in relation to the 
popular ACE model, but is generalizable to more com-
plex models. As an illustration, the ACE model is fit to 
a sample of MZ and DZ male twins, assessed for anti-
social personality disorder (ASPD). First, a Bayesian 
model that does not incorporate prior information is 
fitted and contrasted with a maximum likelihood (ML) 
analysis in order to demonstrate their similarity. 
Second, a model that incorporates prior information 
based on a meta-analysis is fitted. 
 
 
ACE MODEL 
 
The ACE model splits phenotypic variance into three 
components:  

  
 is the additive effects of genes.  represents envi-

ronmental factors that create differences between pairs 
of twins, known as the “shared environment”. Shared 
environmental factors could be social class, parental 
norms, or the local school.  represents environmen-
tal factors that create differences within pairs of twins 
(in addition to everything else that is not captured by 

 and , such as random measurement error), 
known as the “unique environment”. Such factors 
could be everything from birth weight or education not 
shared by twins, to occupation and spouse. What sepa-
rate  from  is not a property of the factors, but 
how the twins respond to them. If twins respond 
similar – it is a shared factor, and if twins respond 
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dissimilar – it is a unique factor. Often these variance 
components are presented on a standardized scale by 
dividing each component by the estimate of total 
variation, making them interpretable as proportion of 
total variation. These are referred to by the capital 
letters, A, C and E. 
 The ACE model is often estimated as a structural 
equation model (Neale & Cardon, 1992), but it can 
also be formulated as a mixed effects model (Rabe-
Hesketh et al., 2008). Rabe-Hesketh et al. (2008) 
clearly outlined ways of specifying the mixed effects 
model, and it is this approach that will be followed 
here. Some repetition of their specification is however 
necessary in order to demonstrate how prior informa-
tion is incorporated in the Bayesian analysis, but see 
their paper for a thorough description. The mixed 
effects ACE model is specified as 

.  

Here yij is the phenotype score for twin i in family j. u 
is the overall mean.   is a random coefficient that 
varies across twins nested in families.  and  are 
random coefficients that vary across families, and eij is 
the residual term.  
 The additive genetic variance is estimated from the 
two random effects  and  which are constrained to 
have equal variance, 

   .  

 represents unique genetic effects among twin pairs 
whereas  represents common genetic effects among 
twin pairs. MZ twin pairs share all genetic effects, 
whereas DZ twin pairs share half of the genetic effects 
while the other half is unique. The different genetic 
covariance in MZ twins and DZ twins is induced from 
the covariates  and , 

,  

.  

cj is a random intercept at the family level and esti-
mates shared environmental variance. The random 
effects are assumed normally distributed and indepen-
dent with mean zero and variance to be estimated, 
representing the ,  and  component. 

  
  
  
.  

In sum, the model has four parameters: u, ,  and 
. 

 
 
BAYESIAN ANALYSES 
 
Bayesian analysis typically starts with specifying in-
formation about model parameters that is derived from 

other information sources than the data itself. This 
information is represented in probability distributions 
known as prior distributions. Prior distributions are 
then combined with the likelihood of the data given 
the parameters to obtain the posterior distribution. The 
posterior distribution is thus a compromise between 
data and prior information (Gelman, 2003), and forms 
the basis for statistical inference. In many applications, 
prior distributions are specified as noninformative in 
order to let the data guide estimation. This is accomp-
lished by assigning equal probabilities over all possible 
parameter values. In such cases, inferences from poste-
rior distributions are often close to those obtained from 
maximum likelihood based techniques. However, if 
information already exists about model parameters, for 
instance based on previous studies or meta-analysis, 
prior distributions can be specified to convey this 
information. Depending on the strength of prior cer-
tainty, the resulting posterior distribution is then to a 
larger extent dominated by the prior distributions. 
 In practice, Markov Chain Monte Carlo (MCMC) 
techniques are often used to approximate the posterior 
distribution. These techniques allow samples from the 
posterior distribution to be simulated even in compli-
cated statistical models. These samples then form the 
basis for inferences about quantities of interest. For 
instance, the mean of the posterior samples can be 
used as a point estimate, the standard deviation as an 
estimate of uncertainty, etc. (for an introduction see 
Kruschke, 2010; Schoot & Depaoli, 2014). MCMC 
sampling also makes it convenient to estimate statistics 
that are functions of parameters. For instance, the 
narrow-sense heritability is a function of the three 
variance parameters in the ACE model: 

  
By calculating this quantity under each simulation, the 
posterior distribution of the narrow-sense heritability 
could also be approximated. 
 Although Bayesian estimation routines are imple-
mented in some general purpose statistical software 
packages, the techniques are often only available for 
standard models. For more uncommon models, such as 
those often found in behavioral genetics, MCMC esti-
mation can be programmed in most common computer 
languages with some programming effort. Perhaps 
most useful are programs such as BUGS (Spiegelhalter 
et al., 2003) and Stan (Stan Development Team, 
2014a), which are fully devoted to Bayesian estimation 
and offers much more flexibility in model specifica-
tions than general purpose software. The examples in 
the current paper were estimated using Stan (see 
http://folk.uio.no/espenmei/bayesianACE.html for 
example code). Stan can run through the command-
line terminal, but also interfaces to general statistical 
software packages that are suited for pre- and post-
processing of data, such as R (Stan Development 
Team, 2014b). 
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Figure 1.  Histograms of posterior samples with uninformative priors. 

 
 
EXAMPLE DATA ANALYSIS 
 
To illustrate the procedure, the ACE model is fit to a 
dataset containing information on ASPD from the 
Norwegian Institute of Public Health Twin Panel (see 
Torgersen et al., 2012 for a description of the material). 
In order to later illustrate the value of including prior 
information when there are limited amounts of avail-
able data, only a sub-sample consisting of the male 
MZ and DZ twins is considered in the analysis. The 
sample consists of responses from 445 MZ twins (220 
pairs) and 236 DZ twins (116 pairs) born between 
1967 and 1979. 
 The outcome measure is an aggregate of seven 4-
level items from the Structured Interview for DSM-IV 
Personality (SIDP-IV), which is a comprehensive 
semi-structured diagnostic interview for DSM-IV Axis 
II diagnoses. Because the purpose of the analysis is 
illustration, complicating considerations such as the 
information level in the dependent variable are not 
considered. The outcome is here treated as continuous. 
 
 
UNINFORMATIVE PRIOR DISTRIBUTIONS 
 
To demonstrate that a Bayesian analysis with non-
informative prior distributions coincides with a ML 
analysis, the data is first analyzed using uninformative 
prior distributions, and parameter estimates contrasted 
with those obtained from a ML analysis. The latter 
analysis was carried out using the Gllamm program in 
STATA which allows constraining the variances of  
and  to equal (Rabe-Hesketh et al., 2004). 
 For the mean ( ), a normal distribution centered at 
zero, with a large standard deviation (relative to the 
scale of data) was used. There exists a comprehensive 
literature on which distributions are suited for uninfor-
mative prior distributions on variance parameters. 
Here, a uniform distribution with a lower bound at 
zero and no upper bound on the standard deviation 
(square root of the variance components) was used, 
which has been recommended as a general approach 
(Gelman, 2006). These priors express no particular 
knowledge about the standard deviations, other than 
that they are greater than zero. 

 
 
 
 

As seen from table 1, the Bayesian and ML estimates 
closely resemble each other, as expected when using 
noninformative priors. The main difference is that the 
Bayesian analysis does not estimate  to be exactly 
zero, but slightly higher. Conversely  is estimated 
slightly higher in the ML analysis. These minor dis-
crepancies are likely a result of  being very close to 
zero, which can be problematic in linear mixed models 
(Chung et al., 2012). The uniform prior can also result 
in overestimation when the variance is small (Gelman, 
2006). Additionally, point estimates based on the pos-
terior samples will depend on which summary statistic 
is being used as long as the distribution is not symme-
trical. In this case, the median would lead to a consi-
derably lower estimate of . However, it is perhaps 
more informative to visually inspect the posterior sam-
ples. Figure 1 display histograms of the standardized 
variance components. Although C estimates as high as 
.2 are not completely unlikely, most of the mass is 
located very close to zero. Consequently, there is not 
much evidence suggesting that a C effect is present in 
the investigated population. In this situation, the cj 
term could alternatively be dropped from the model in 
favor of retaining a more parsimonious AE model. 
This approach is often followed in this type of ana-
lysis, but will not be further investigated here (see 
Vehtari, Gelman and Gabry (2015) for a discussion of 
model comparison in a Bayesian context). 
 
 
Table 1.  Summary statistics from ML and Bayesian analysis 
with uninformative priors. Estimate is posterior mean for the 
Bayesian method. SD is posterior standard deviation. SE is 
standard error. Regression coefficients are the “fixed-
effects” in the model. Variance components are the variances 
of the “random-effects” on the scale of the data and the 
standardized variance components. 
 
 Bayesian ML 
 Estimate SD Estimate SE 
Regression coefficients     
 u  .61 .07 .61 .07 
Variance components     
  .99 .18 1.08 .14 
  .09 .11 .00 .00 

  1.09 .10 1.07 .10 
 A   .46  .50  
 C   .04  .00  
 E   .50  .50  
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Figure 2.  Illustration of prior distributions. 
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Figure 3.  Histograms of posterior samples with informative priors. 

 
 
 From this analysis, additive genetic effects seem to 
account for roughly half of the variation in ASPD for 
males, whereas there is not much evidence suggesting 
the presence of shared environmental effects. Either, 
this is because shared environments do not contribute 
to variation in the population investigated, or, the data 
is too noisy to accurately estimate a variance compo-
nent attributable to shared environmental effects. 
Assuming the latter, it would be meaningful to add 
information to allow this entity to be more accurately 
estimated. This can be done by forming informative 
prior distributions that favors certain parameter values. 
 
 
INFORMATIVE PRIOR DISTRIBUTIONS 
 
As discussed above, informative prior distributions 
carry information about model parameters that is 
obtained from sources other than the current data. In 
order to form informative prior distributions for the va-
riance parameters, results from Rhee and Waldman’s 
(2002) meta-analysis on the genetic and environmental 
influences on antisocial behavior were used. In total, 
51 studies were analyzed using varying methods for 
examination of heritability. They report genetic and 
environmental variance estimates as a function of dif-
ferent covariates. For this application, their estimates 
of A, C and E for males were considered the most 
appropriate background information. Their aggregate 
estimates across studies were: A = .38, C = .17 and E = 
.45. 
 Gamma distributions were used to convey this in-
formation. Gamma distributions have been proposed 
as appropriate prior distributions for variance para-
meters when prior information is available (Chung et 
al., 2012). A difficulty arises in parameterizing these 
distributions to reflect prior knowledge. In this case, 
they were parameterized with mode equal to the 
aggregate estimates from the meta-analysis. Ideally, 
information on between-study variance of the A, C and 

E components would be available and incorporated as 
prior uncertainty in the point estimates. However, the 
author has not been able to locate such information. 
Therefore, it was reasoned that neither of the variance 
components was likely to differ more on average than 
± .15 on a standardized scale (Analysis was also 
carried out setting the standard deviations to .10 and 
.20. This did not lead to any substantial change in 
parameter estimates.). Based on this decision, gamma 
distributions with mode equal to the meta-analytic 
aggregate results and standard deviations equal to .15 
were used as prior distributions for the variance 
components (see figure 2). Because the data analyzed 
is not on a standard scale, the distributions were scaled 
according to the total variance in the outcome variable. 
 From table 2, it can be seen that when prior infor-
mation is included in the model, the resulting posterior 
estimates are moved towards the prior distributions, 
and the difference between these estimates and those 
obtained from the ML approach increases.  remains 
almost the same, but  is estimated lower and  
higher. The histogram (figure 3) of the C component 
shows that the mass of the posterior has clearly moved 
away from zero, peaking around .1. From these results, 
it seems more appropriate to retain C in the model and 
thus accept the full ACE model as an adequate des-
cription of the data. In many ways this also seems like 
a less drastic decision, because it seems unreasonable 
to conclude that there exist no common environmental 
effects in the population. 
 
 
DISCUSSION 
 
The current paper has discussed how Bayesian analysis 
allows prior information to be included in estimation 
of parameters of a heritability model, and illustrated 
this with a real data example. The initial conclusion 
from a conventional analysis of no effect of shared 
environment, was altered to a conclusion that shared 
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environment contribute to ASPD. Because the purpose 
of the analysis has been to illustrate the procedure, the 
analysis was restricted to the ACE model which is 
likely to be familiar to most readers. However, it is 
when estimating models of higher complexity the met-
hod are likely to be most advantageous. By including 
information in the prior distributions, parameters that 
would otherwise be hard to identify might be possible 
to estimate. Consequently, this allows researchers to 
investigate hypothesis of higher complexity. 
 Advantages of Bayesian analysis have been high-
lighted, specifically the possibility to include prior 
information in the analysis as well as the relatively 
straight forward steps of obtaining posterior estimates 
of functions of parameters, such as standardized vari-
ance components. There are however also issues speci-
fic to this type of analysis that should be considered. 
 One of the most controversial issues in Bayesian 
methods relates to the subjective nature of building 
prior distributions. Although the prior distributions 
used here were partially based on results from a large 
meta-analysis, the spread of the prior distributions was 
based on personal experience with heritability research. 
Other researchers might have different preferences, 
yielding different posterior estimates. This could in 
turn lead to different conclusions. However, there are 
always subjective decisions that have to be made when 
building a statistical model. It is the analysts that de-
cide which covariates to include in the model, how to 
model multivariate scales, etc. These decisions, as well 
as chosen priors, always need to be justified. 
 Although the great flexibility in model specification 
is one of the advantages of MCMC based Bayesian 
analysis, it can also work as a disadvantage. More 
flexibility also means more chances of committing 
errors, and most software offers little protection 
against misspecification of models. It is therefore 
suggested to always validate models by comparing 
results against those obtained from standard packages, 
or to simulate datasets where the true parameters are 
known. 
 The goal of the current paper has been to illustrate 
Bayesian estimation and the use of informative priors 
in heritability research. Because of the large amount of 
previous research, these methods seems particularly 

useful in the field of behavioral genetics when con-
sidering complicated research questions that typically 
require large amounts of data. 
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Table 2.  Summary statistics from Bayesian analysis with 
informative priors. Estimate is posterior mean and SD is 
posterior standard deviation. Regression coefficients are the 
“fixed-effects” in the model. Variance components are the 
variances of the “random-effects” on the scale of the data 
and the standardized variance components. 
 

 Estimate SD 
Regression coefficients   
 u  .61 .07 
Variance components   
  .86 .16 

  .23 .12 
  1.09 .09 
 A .39  
 C .11  
 E .50  
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