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ABSTRACT 

 
Epidemiological investigations and interventions are increasingly focusing on social networks. Two 
aspects of social networks are relevant in this regard: the structure of networks and the function of 
networks. A better understanding of the processes that determine how networks form and how they operate 
with respect to the spread of behavior holds promise for improving public health. Visualizing social 
networks is a key to both research and interventions. Network images supplement statistical analyses and 
allow the identification of groups of people for targeting, the identification of central and peripheral 
individuals, and the clarification of the macro-structure of the network in a way that should affect public 
health interventions. People are inter-connected and so their health is inter-connected. Inter-personal health 
effects in social networks provide a new foundation for public health. 
 
 
 

A person with more friends and social contacts gene-
rally has better health than a person with fewer friends 
(1-3), and persons at the center of a network are more 
susceptible to both the benefits and risks of social con-
nection (e.g., for infectious disease) than those at the 
periphery of a network (4-6). People are thus affected 
by their location in a social network. In addition, and 
distinctly, they are influenced by behaviors and out-
comes in people who are “nearby” them in the network 
(including their friends, friends of friends, and so on). 
It is not just how connected a person is, but also who a 
person is connected to, and what those people are 
doing, that has an effect. Indeed, social networks affect 
health through a variety of mechanisms, including: 1) 
provision of social support, 2) social influence (e.g., 
norms, social control), 3) social engagement, 4) 
person-to-person contacts (e.g., pathogen exposure), 
and 5) access to resources (e.g., money, jobs, informa-
tion) (7). New work with social networks suggests that 
such inter-personal effects extend beyond just those 
individuals to whom a person is directly connected. 
Health-related phenomena, whether germs or informa-
tion or behaviors, can diffuse widely within social 
networks. 
 The scientific objectives in social network analysis 
are generally 1) to understand the processes that deter-
mine the topology, or structure, of the network, and 2) 
to understand the extent and mechanisms behind any 
inter-personal effects within the network. Social net-
work analysis also promises to provide targets for 
intervention, by identifying influential individuals, by 
identifying cliques of at-risk individuals, or by eluci-
dating procedures for maximizing the impact of health 
interventions. Creating visual images of networks can 

serve important heuristic purposes in both research and 
policy, and visual images are powerful complements to 
quantitative analyses. 
 
 
SOCIAL NETWORK ELEMENTS AND ATTRIBUTES 
 
Social networks consist of two elements: individuals 
(nodes) and the social ties between them. Once all the 
nodes and ties are known, one can draw pictures of the 
network and discern every person’s location within it, 
placing each individual in social space analogous to 
geographic space. Within a network, one can speak of 
the “distance” between two people (also known as the 
“geodesic distance” or “degree of separation”), which 
is the shortest path in the network from one person to 
another. For example, a person is one degree removed 
from her friend, two degrees removed from her 
friend’s friend, three degrees removed from her 
friend’s friend’s friend, and so on. Social network ties 
are not restricted to friends, of course, and one may be 
connected to one’s spouse’s brother’s friend, or one’s 
co-worker’s friend’s sister, and so on. In discussing 
network effects, it is helpful to refer to “egos,” or the 
individuals under study, and their “alters,” or the 
people to whom they are connected (though the same 
person may be an ego and an alter from different per-
spectives). 
 Social ties may be described as “edges” (undirected 
relationships between nodes) or “arcs” (directed rela-
tionships from one node to another). Examples of un-
directed relationships include spouses and siblings. A 
directed relationship is one such as between two 
friends in which A identifies B as a friend but B does 
not reciprocate. Edges and arcs are often measured on 
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a binary (presence/absence) scale, but may also be 
valued (e.g., how well two people know each other or 
how much they like each other). 
 Network data may be fruitfully represented in mat-
rix or graphical form. A matrix indicates relationships 
between every person and every other person by 
coding numbers indicating the existence or nature of 
relationships in a square table. A graph shows these 
connections visually, as illustrated by Figures 1-4. 
Here, we focus on so-called sociocentric network 
studies. These are studies that attempt to discern all the 
inter-connections between members of a defined popu-
lation. In contrast, an “egocentric” study collects infor-
mation about people’s contacts from each respondent, 
without the requirement that the alters also be in the 
study. 
 A social relationship is “transitive” if there is re-
dundancy between direct and indirect relationships. If 
A knows B and A knows C, then their relationship is 
transitive if B and C also know one another. High 
transitivity is a fundamental property of human social 
networks. If we were merely making random connec-
tions with people drawn from the population, then 
there would be an extremely low probability that two 
of a person’s friends are also friends with one another. 
Instead, we frequently make friends with our friends’ 
friends, thus dramatically increasing the probability of 
transitive relationships. 
 Often, real social networks contain collections of 
sub-networks or “components.” A component is a part 
of a network in which everyone is connected by at 
least one path to every other person in the same part. 
Logically, this means that for two different compo-
nents, no one in the first component can be connected 
to anyone in the second component. If the largest com-
ponent contains a majority of the nodes in a network, it 
is known as a “giant component.” Analyses of graphs 
also leads to the identification of subgroups of nodes 
that are more closely linked to one another in “com-
munities” or “cliques” than they are to the rest of the 
network. 
 In its simplest form, network analysis focuses on 
connections between homogenous nodes, but most 
substantively interesting sets of network data incorpo-
rate information on the characteristics of nodes, such 
as their gender, income, or health behaviors. Other 
characteristics distinguishing nodes from one another 
may be based on examination of the network itself. For 
example, in a network of undirected ties, the degree of 
a node is its number of other nodes to which it is 
directly connected. For a directed graph consisting of 
arcs, the number of arcs that point to a node is that 
node’s in-degree; the number of arcs that emanate 
from a node is its out-degree. Nodes can obviously 
vary in their degree. Nodes having higher degree are 
usually interpreted as being more prominent and influ-
ential within the network. 
 Measures of centrality in networks capture the 
extent to which a node connects, or lies between, other 

nodes, and hence its tendency to be positioned near the 
center of its local network. Centrality is also taken as a 
marker of importance and prominence. The simplest 
measure of centrality is the aforementioned count of 
the number of friends (known as “degree” centrality). 
People with more friends will tend to be more central. 
But this measure does not account for differences in 
the centrality of one’s friends. Individuals who are 
connected to many well-connected peers are more cen-
tral than those who are connected to an identical num-
ber of poorly-connected peers. In other words, those 
who befriend popular people should be more central 
than those who befriend unpopular people. “Eigen-
vector centrality” captures this (8). This measure 
assumes that the centrality of a given subject is an 
increasing function of the sum of all the centralities of 
all the subjects to whom he or she is connected. 
Eigenvector centrality values are inherently relative: 
an individual connected to every other person in the 
network would have the maximum possible value, and 
a person not connected to anyone else would have a 
value of 0. Other measures of centrality capture the 
extent to which a particular node lies between other 
nodes, i.e., the extent to which a node lies along geo-
desic paths linking other nodes that hence must be 
traversed if something (e.g., information, germs, 
money) is to move between the other nodes in the net-
work (9). Of course, with visual images of networks, it 
is quite straightforward to see who is in the middle of 
the network and who is on the periphery. 
 Finally, a so-called one-mode network includes a 
single type of node, such as patients. In a two-mode or 
“bipartite” network, there are two types of nodes (e.g., 
physicians and patients) and all relationships link 
nodes in one set to nodes in the other set (e.g., patients 
1, 2 and 3 see doctor A, and patients 3, 4 and 5 see 
doctor B). A two-mode network can be reduced to a 
one-mode network on the basis of indirect relation-
ships: physicians are connected to one another indi-
rectly through their shared patients, and patients are 
connected to one another by virtue of having physi-
cians in common. 
 
 
BASIC NETWORK TOPOLOGIES 
 
Networks often have stereotypical structures which 
have distinct visual appearances. For example, they 
might be organized in forms such as regular lattices, 
small-world networks, scale-free networks, or random 
graphs. In regular lattices, nodes are highly clustered, 
having ties only with their nearest neighbors. At the 
other extreme, in a random graph, nodes are randomly 
linked together, and there is no local clustering; geo-
desic paths between any two nodes in random graphs 
are relatively short. Small-world networks display 
substantial local clustering, but include a small number 
of “shortcuts” to distant parts of the network; like a 
random graph, they have short path lengths between 
any two nodes (10). These shortcuts reduce the time it 
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takes for “communication” from one end of the net-
work to the other, and this property can dramatically 
change disease transmission dynamics (11). In a scale-
free network, ties between nodes do not occur purely 
at random but rather may result from a process of 
preferential attachment, in which nodes having more 
links are disproportionately apt to acquire new ones 
(12). A scale-free network displays a so-called power 
law in its degree distribution (i.e., the distribution of 
the number of ties each node has); it has far more 
nodes of high degree than would be found in a random 
graph. These high-degree nodes function as hubs and 
the short path length found in random networks is 
found in scale-free networks. Still other network topo-
logies are also possible. For example, in ring networks, 
the nodes are largely arrayed along large loops. Natu-
rally occurring human networks do not necessarily 
conform to the foregoing types, in part because of the 
complexity of the underlying processes which create 
them (13). 
 
 
DRAWING NETWORKS 
 
Once a full set of individuals and the ties among them 
are observed, there is only one network per se. How-
ever, this network can be analyzed or drawn in various 
ways. For example, when drawing the network, one 
might include only ties between people and their 
friends and spouses while excluding ties to siblings 
and co-workers. Or, in a network that contained peo-
ple’s connections, one might include only individuals 
with whom people had had sex or transacted business. 
Moreover, one might look at just the largest com-
ponent of a network, or one might sample several 
hundred nodes from the network to study part of its 
structure more closely. 
 It is important to note, however, that while the fun-
damental pattern of ties in a social network (its topo-
logy) is fixed, how this pattern is visually rendered in 
two-dimensional space depends on the analyst’s objec-
tives. Imagine a set of 500 buttons strewn on the floor. 
And imagine that there are 2,000 strings we can use to 
connect the buttons. We pick two buttons at random 
and connect them with a string. Then we repeat this 
procedure until all the strings are used up. Some 
buttons will have many strings attached to them (and 
hence have high degree), and others, by chance, will 
never have been picked and so will not be connected to 
any other button. Perhaps some groups of buttons will 
be connected to each other but be separated from other 
groups because no string connects any button in one 
group to any button in the other group. These would be 
two components of the network. If we were to pick up 
one button in one component and lift it up from the 
floor, all the other buttons it was attached to, directly 
or indirectly, would follow it up into the air as we 
lifted it. And if we were to drop the mass of buttons 
onto another spot on the floor, it would look different 

than when we picked it up. But the fundamental topo-
logy would be exactly the same. 
 The challenge in network visualization procedures 
is to specify a way of showing this fundamental and 
invariant topology in an appealing and faithful way. 
Several procedures are available to draw networks in 
two-dimensional space. Most procedures rely on so-
called “spring embedder” mechanisms, which see the 
ties as springs and which iteratively reposition nodes 
so as to minimize the total “energy” in the system. The 
widely used Kamada-Kawai algorithm (14), imple-
mented in Pajek software (15), iteratively repositions 
nodes in order to reduce the number of ties that cross 
each other, while also maintaining a certain distance 
between the nodes to minimize their overlap. It gene-
rates a matrix of shortest network path distances from 
each node to all other nodes in the network and reposi-
tions nodes so as to reduce the sum of the difference 
between the plotted distances and the network dis-
tances. The Fruchterman Rheingold algorithm (16), 
also implemented in Pajek, gives a somewhat different 
visualization, as it tends to place nodes in tightly-knit 
communities much closer together and much further 
from other parts of the network. 
 There are a number of social network data sets that 
contain information about nodes and ties that are lon-
gitudinal, namely, that record information across time. 
Nodes might come and go (people are born or die), ties 
might form and break (people make new friends) or 
individuals might change (they might gain or lose 
weight, for example). Visualizing such temporally 
evolving networks can involve other software such as 
SONIA (17), and examples of the videos that such 
software can generate are available at the author’s 
websites. Examples of such longitudinal network data-
sets include the National Longitudinal Study of Ado-
lescent Health (Add Health) (18), and the Framingham 
Heart Study Social Network (FHS-Net). Epidemiolo-
gical studies of sexually transmitted disease networks 
often also have, or benefit from, such longitudinal data 
about who is having sex with whom (19). 
 
 
STATISTICAL ANALYSIS OF NETWORKS 
 
Individuals connected to each other in a network may 
evince similar characteristics (such as having similar 
academic performance, body size, health behaviors, or 
political views), and clustering within the network 
based on such characteristics can be visualized in net-
work graphs. Such clustering, however, could be attri-
buted to at least three processes: 1) homophily, where-
by individuals choose to become connected based on 
shared attributes or behaviors (i.e., the tendency of like 
to attract like, or of “birds of a feather to flock toget-
her”) (20); 2) induction, whereby attributes or behavi-
ors in one person cause analogous attributes or behavi-
ors in others; or 3) confounding, whereby connected 
individuals jointly experience contemporaneous expo-
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sures (that cause them both to share an attribute or 
behavior). To distinguish among these effects using 
observational data is dificult and requires repeated 
measures of the attributes (21), longitudinal informa-
tion about network ties, and information about the na-
ture or direction of the ties (e.g., who nominated whom 
as a friend). 
 The statistical analysis of networks can focus on the 
processes responsible for network structure (such as 
homophily), or the processes involved in network 
function (such as induction). With respect to the 
analysis of processes determining the structure of the 
network, one might ask such questions as: Why do 
networks have a particular structure? What determines 
which ties exist? Such processes might include homo-
phily, rules governing a predilection to transitivity, or 
other rules governing the link-forming process (such 
as preferential attachment to high-degree individuals, 
or even genetic heterogeneity in individuals’ taste for 
network location (22)). Such analyses may use statisti-
cal models such as so-called p* models or conventio-
nal regression analysis (especially in sparse networks 
where the number of ties is low compared to the num-
ber of nodes) (23,24). 
 The statistical analysis of networks may also focus 
on the processes by which attributes or behaviors 
spread across the network. These two analytic frames 
can overlap. Some statistical packages attempt to mo-
del both processes simultaneously, such as SIENA, but 
this software is presently limited in the size of the net-
works it can handle (25). Other approaches use more 
conventional regression techniques, with adjustments 
required by the application to networks (such as the 
non-independence of the observations) (26). Tools for 
analyzing the spread of phenomena in networks across 
time when the network is itself evolving are still in-
complete and under active statistical development. For 
example, the directionality of arcs may be exploited to 
support causal inference (27-29). 
 There are a variety of other special statistical issues 
involved in the study of networks. For example data 
are often missing, and, in a network situation, they can 
be missing in quite a number of complex ways; nodes, 
ties, attributes, or observation waves may be missing, 
and this missingness affects not just the individual 
observation, but others to which it is connected. 
Furthermore, the network under study may be only 
partially observed (either by design, as in sampling, or 
unavoidably, as in observational studies), and people 
within the network may have ties to others who are not 
observed by the investigator; when this process is 
associated with attributes of the people being studied, 
this can lead to confounding. The current best practice 
for resolving this problem is to compare the distri-
bution of the dependent variable between people who 
have ties inside the network and those who have ties 
outside the network. If the two distributions are not 
statistically different, then it suggests missingness will 
not have a direct impact on the estimates of associa-
tions within the group that is fully observed. 

THE FRAMINGHAM HEART STUDY SOCIAL 
NETWORK 
 
The Framingham Heart Study (FHS), a landmark epi-
demiological study initiated in 1948, has yielded im-
portant findings about cardiovascular risk factors and 
other health phenomena since its inception. When it 
was initiated in 1948, 5,209 people in Framingham, 
Massachusetts were enrolled into the “Original Co-
hort”. In 1971, the “Offspring Cohort”, composed of 
most of the children of the Original Cohort, and their 
spouses, was enrolled. This cohort of 5,124 people has 
had almost no loss to follow-up other than death (only 
10 cases dropped out). In 2002, enrollment of the so-
called “Third Generation Cohort” began, consisting of 
4,095 of the children of the Offspring Cohort. The 
Framingham Heart Study also involves certain other 
smaller cohorts (e.g., a minority over-sample called the 
OMNI Cohort enrolled in 1995). Participants in all 
these cohorts come to a central facility for detailed 
examinations and survey data collection at regular 
intervals. For example, there have been seven waves of 
data collection since 1971 in the Offspring Cohort, 
roughly every four years (30). 
 To develop a new dataset based on the FHS, which 
we call the FHS-Net, we used the Offspring Cohort as 
the source of 5,124 egos to study. Each ego in this 
cohort is connected to other people (the alters) via 
friendship, family, spousal, neighbour, and coworker 
relationships. Overall, within the entire FHS social 
network composed of both the egos and any detected 
alters in any FHS cohort, there are 12,067 individuals 
who were connected at some point during the period 
1971 to 2003. 
 To create the network dataset, we computerized 
information about the Offspring Cohort from archived, 
handwritten administrative tracking sheets that had 
been used since 1971 to identify people close to parti-
cipants for the purpose of facilitating follow-up. These 
documents contain valuable, previously unused social 
network information because subjects were asked to 
identify their relatives, “close friends,” place of resi-
dence, and place of work in order to ensure they could 
be contacted every two to four years. In the field of 
network science, such procedures for identifying social 
ties between individuals are known as “name gene-
rators” (31,32). 
 Moreover, this dataset identifies the network links 
among participants longitudinally at each wave. Over 
the course of follow-up, the participants spread out 
across the USA, but they nevertheless continued to 
participate in the FHS. As a person’s family changed 
due to birth, death, marriage, or divorce, and as their 
contacts changed due to residential moves, new places 
of employment, or new friendships, this information 
was captured.  
 Overall, there were 53,228 observed social ties be-
tween the 5,124 egos and any alters in any of the FHS 
cohorts, yielding an average of 10.4 ties to family, 
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friends, and co-workers over the course of follow-up. 
Additional ties to neighbours were also ascertained, 
based on information about all participants’ place of 
residence, but they are not included in the foregoing 
count since the number of neighbour ties depends on 
how “neighbour” is defined (e.g., whether we restrict 
the definition to immediate, “next-door” neighbours, 
or neighbours residing on the same block within 25 or 
100 meters, etc.). For example, one ego in the Off-
spring Cohort had 18 alters: a mother, a father, a sister, 
two brothers, three children, two friends, five neigh-
bours (living within 25 meters), and three coworkers, 
and all these individuals were themselves in the net-
work and repeatedly observed since 1971. 
 Given the compact nature of the Framingham social 
network in the period since 1971, many of the nomi-
nated contacts were, as noted, themselves also parti-
cipants of one or another FHS cohort – which is a 
crucial feature. This means that detailed survey and 
physical exam information about both the ego and the 
alters is available. For example, 83% of egos’ spouses 
were directly and repeatedly observed and 87% of 
egos with siblings had at least one sibling who also 
participated in the FHS. For 39% of the egos, at least 
one co-worker participated in the study. For 10% of 
the egos, an immediate neighbour was also in the FHS 
(more expansive definitions of neighbours, such as 
those people living within 100 meters, yielded much 
higher percentages). 
 Importantly, 45% of the 5,124 egos were connected 
via friendship to another person in the study; there 
were 3,604 unique, observed friendships for an ave-
rage of 0.7 friendship ties per ego. However, there was 
substantial variation from person to person, ranging 
from several people with no friends to one person who 
was nominated as a friend by eight different FHS 
participants. Because friendship identifications are 
directional arcs, we can study three different types. An 
“ego-perceived friend” means the ego nominates an 
alter as a friend, but the friendship nomination is not 
reciprocated. In this case the ego thinks of the alter as 
a friend, but the alter may not think of the alter as a 
friend. An “alter-perceived friend” means the alter 
nominates the ego as a friend but not vice versa. Here, 
the ego may not feel any closer to the alter than he or 
she would to a stranger. Finally, a “mutual friend” is 
one in which the nomination is reciprocal. This direc-
tional information can be exploited for causal infer-
ence in social networks, helping to address issues of 
endogeneity and confounding (33-35). 
 We evaluated whether the FHS-Net resembled a 
small-world (36), scale-free (37), or hierarchical net-
work (38). Examination of the degree distribution in 
the FHS-Net revealed that most individuals have one 
or two close friends and 10 or fewer family members 
who also participate in the Framingham Study (the 
number of close friends is in keeping with other 
national studies (39,40)). A small number of nodes are 
very well-connected, as also observed in other social 

networks. However, the degree distribution suggests 
that the FHS-Net does not conform either to a small 
world network model nor to the scale-free model (41). 
 
 
FINDINGS IN THE FHS SOCIAL NETWORK 
 
Our study of the FHS-Net has documented the clus-
tering of individuals with similar characteristics within 
the network. In particular, we have found that obesity, 
smoking behavior, and happiness show clustering (42-
44). Importantly, this clustering is not solely due to 
homophily, and our analyses provide diverse sorts of 
evidence for the likelihood of spread of these traits, 
that is, evidence of induction. In addition, we find that 
these clusters extend to three degrees of separation, 
such that, from the point of view of an ego, their 
weight status, smoking behavior, and happiness are 
related to the analogous attributes of individuals three 
degrees removed from them (e.g, their friends’ friends’ 
friends). These findings provide support for the idea 
that these behaviors and states have collective and not 
just individual determinants. 
 Here, we show three figures illustrating various 
aspects of our findings. Figure 1 shows the largest 
connected sub-component of the FHS-Net in the year 
2000, with graphical features highlighting obesity. 
Specifically, node size is made proportional to 
people’s body mass index (BMI), and nodes are 
colored yellow if the BMI is above 30 (which indicates 
obesity). This network is sufficiently dense to obscure 
much of the underlying structure, though regions of 
the network with clusters of obese or non-obese per-
sons can be observed. 
 Figure 2 shows part of the FNS-Net in 1971 and 
2000. Again, node size is made proportional to an 
individual’s attribute, here, the number of cigarettes 
smoked, and nodes are colored yellow if a person 
smoked more than one cigarette per day. There is sub-
stantial change in the prevalence of smoking and in the 
social life of smokers. In 1971, there were many more 
smokers as compared to 2000, and the smokers occu-
pied the center of their circles of friends and family to 
the same extent that non-smokers did. However, by 
2000, most people had quit smoking, and those who 
still smoked were more likely to be at the periphery of 
the network, which is visible by inspection (and con-
firmed statistically). Moreover, there was an increased 
tendency for smokers to be connected primarily to 
other smokers and for there to be relatively separate 
clusters of smokers and non-smokers. And whole clus-
ters of smokers quit smoking together. 
 Figure 3 shows the largest connected network com-
ponent in 2000 based on a restricted set of ties among 
siblings, spouses, and friends (co-workers and neigh-
bours are again excluded to simplify the image), and 
the objective here was to study the role of social 
networks in emotional states like happiness (namely, 
whether emotions have a collective, and not merely 
individual, origin). To highlight the clustering of hap-
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Figure 1: Obesity clusters in the Framingham Social Network.  This is the largest connected component of the 
Framingham Heart Study Social Network in 2000 (N=2,200). Node border indicates gender (red=female subject, 
blue=male subject), node color indicates obesity (yellow=BMI>30), node size is proportional to BMI, and tie colors 
indicate relationship (purple=friend or spouse, orange=family). Clusters of obese and non-obese individuals are visible, 
though the complexity of the image is still very high [adapted from (42)]. 

 
 
piness, which is apparent upon visual inspection, each 
node is colored according to the subject’s happiness on 
a spectrum from blue (unhappy) to yellow (happy). In 
this particular visualization, we used a technique that 
we call “social space smoothing”. To better identify 
large-scale structure in the network, we recoded the 
happiness of each person to be equal to the average of 
the individual’s happiness and that of all people to 
whom he or she is connected (i.e. the ego and all his or 
her first-degree alters). Visual inspection of Figure 3 
shows that there are large social “neighborhoods” that 
tend to be more happy and others that tend to be less 
happy. Figure 3 also suggests a relationship between 
network centrality and happiness: subjects at the core 
of their local networks appear more likely to be happy, 
while those on the periphery appear more likely to be 
unhappy. 
 All of the foregoing visualizations were coupled 
with statistical analyses of the kinds described earlier. 
In ongoing work, we are investigating how alcohol 
consumption, eating behavior, depression, loneliness, 
and health screening behavior might spread in social 
networks. Other contemporary phenomena that might 
evince epidemic properties include peanut allergies 
(45) and autism diagnoses (as some work by Peter 

Bearman may suggest); both of these may have a 
social network component in that as individuals note 
others around them with these conditions, they may be 
more prone to being diagnosed with them themselves. 
 
 
ONLINE NETWORKS 
 
Many investigators have been examining online social 
networks with respect to health-related phenomena and 
are beginning to use online networks as opportunities 
for interventions (46,47). One of our efforts has in-
volved the examination of a group of 1,700 college 
students who are interconnected in Facebook (48). We 
examined these students’ online profiles, noting their 
friends and their appearance in photographs. 
 The photographs were valuable in two ways. First, 
we coded who appeared in photographs with whom. 
People who take the trouble to be in the same place, 
take a photograph together, upload the photograph, 
and label (“tag”) it, almost certainly have a closer rela-
tionship with one another than the usual “friends” 
people indicate in online social networking sites. In 
fact, while the average student in our data had over 
110 friends on Facebook, they had an average of only 
six “picture friends” (i.e., people close enough that
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Figure 2: Smoking clusters in the Framingham Social Network.  This is a random sample of 1000 subjects in the FHS 
social network chosen from the largest connected subcomponent at exam 1 (left) and exam 7 (right). Node border indicates 
gender (red=female, blue=male), node color indicates cigarette consumption (yellow is for ≥1 cigarettes per day), node size is 
proportional to number of cigarettes consumed, and arrow colors indicate relationship (friends and spouses = orange, family = 
purple). By 2000, it is apparent that smokers are more likely to occur at the periphery of their networks. And smokers are 
usually in smaller subgroups than nonsmokers. The circles in the panel for 2000 identify densely connected clusters of green 
circles where there are no smokers at all or where the smokers sit at the periphery of the subgroup [adapted from (43)]. 
 
 
 
they tagged the student). Second, we coded whether 
the students were smiling in their profile photographs 
(as well as other physical attributes), and we mapped 
the network of students and their picture friends, ma-
king note of who was smiling and who was not. 
 Figure 4 is a map of part of this Facebook network 
in 2007. It contains 353 students; the lines between 
nodes indicate that the connected individuals were 
tagged in a photo together. Once again we used “social 
space smoothing” to highlight structure in the network. 
Students who are smiling (and who are immediately 
surrounded by smiling people in their network) are 
colored yellow. Students who are frowning (and who 
are immediately surrounded by such serious looks) are 
colored blue. As in the Framingham happiness study, 
here the blue nodes and the yellow nodes cluster 
together, indicating large-scale structure of smiling 
“neighborhoods” in the online network. Visual inspec-

tion suggests, and statistical analyses confirm, that 
those who smile are measurably more central to the 
network compared to those who do not smile. More-
over, statistical analysis of the network shows that 
people who smile tend to have more friends (smiling is 
associated with having an average of one extra friend, 
which is impressive considering that people only have 
about six close friends). 
 
 
PRACTICAL UTILITY OF NETWORK GRAPHS 
 
At present, there is much interest in using networks as 
means to spread positive health behaviors or as targets 
of health interventions. This impetus is supported by 
prior work on peer effects. For example, the smoking 
behavior of an adolescent’s friends influences the odds 
of smoking initiation, continuation, and cessation (49-
51). Similar effects are seen in alcohol use (52,53). 
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Figure 3. Happiness clusters in the Framingham Social Network.  This graph shows the largest component of friends, 
spouses, and siblings in the year 2000. There are 1020 individuals shown. Each node represents a subject and its shape 
denotes gender (circles are female, squares are male). Lines between nodes indicate relationship (black for siblings, red 
for friends and spouses). Node color denotes the mean happiness of the ego and all directly connected (distance 1) alters, 
with blue shades indicating the least happy, and yellow shades indicating the most happy (shades of green are 
intermediate). Clusters of happy and unhappy individuals are visible, and unhappy individuals appear more likely to be at 
the periphery of the network [adapted from (44)]. 

 
 

 
Figure 4. Smiling clusters in the online Facebook network.  This graph shows part of a network of friends discerned 
with the online social network site Facebook in 2007. It contains 353 students; the lines between nodes indicate that the 
connected individuals were tagged in a photo together. Students who are smiling (and who are immediately surrounded 
by smiling people in their network) are colored yellow. Students who are frowning (and who are immediately surroun-
ded by such serious looks) are colored blue. Shades of green indicate a mix of smiling and non-smiling friends. It is 
apparent that blue nodes and the yellow nodes cluster together, indicating large-scale structure of smiling in the online 
network. Moreover, people who do not smile seem to be located more peripherally in the network. 
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Smoking and alcohol cessation programs that provide 
peer support – that is, that modify the social network 
of the target – have been shown to be more successful 
(54-56). Like tobacco and alcohol consumption, beha-
viors related to weight also appear to be socially trans-
missible. Studies have linked unhealthy weight-control 
behaviors among adolescent girls to the dieting beha-
viors of their peers (57), and children’s food prefe-
rences have been shown to be manipulable using peer 
modeling (58). Among adults, delivering a successful 
weight loss intervention to one person has been shown 
to trigger substantial weight loss in that person’s 
friends, and there is evidence to suggest that weight 
loss interventions that target social networks are more 
effective than are those that target isolated individuals 
(59-62). Weight loss has also been shown to spread 
across social ties in intervention trials (63). 
 Network visualizations can support such interven-
tions in numerous ways (either with or without supple-
mentary statistical analyses). First, they can be used to 
identify cliques or clusters of individuals with similar 
health-relevant attributes within which reinforcement 
of positive or negative behaviors may be taking place. 
These cliques could be targeted for collective inter-
ventions. 
 Second, they can be used to identify and target 
individuals for public health interventions. Peripheral 
individuals might be at risk for ill health by virtue of 
social isolation, and central ones might be appealing 
targets for intervention since they may be particularly 
influential (64,65). 
 Third, a knowledge of the overall network structure 
may be crucial to the design of public health inter-
ventions. A compelling example is provided by the 
case of sexually transmitted diseases (STDs). Bearman 
and Moody used a sub-sample of Add Health data to 
model the complete sexual network of a mid-sized, 
predominantly white Midwestern high school using 
information on reported romantic partnerships over an 
18-month period (66). They found that a surprisingly 
sizeable 52% of all romantically-involved students 
were embedded in one very large ring network with 
branches, which they described as a “spanning tree”. 
This spanning tree was especially notable for its lack 
of redundant ties, meaning that most students were 
connected to the superstructure by one pathway only. 
 Most models of STD transmission assume the exis-
tence of high activity “cores” that disseminate disease 
to lower activity individuals and that sustain epidemics 
by functioning as reservoirs of infection. As Bearman 
and Moody point out, however, their findings are 
significant both for their inconsistency with this 
traditional notion of core groups as the drivers of STD 
diffusion and for their implications for STD control, 
which stem from the largest component’s fragility: if a 
link from the “trunk” of the spanning tree is removed, 
the transmission of infection beyond that linkage is 
effectively halted as the network breaks into two dis-
joint components. As such, the network they documen-

ted was highly vulnerable to the removal of single ties 
or nodes, which, they argue, is best achieved by broad-
based, “broadcast” STD control programs – that is, 
those that target the entire population rather than spe-
cific activity groups. 
 In studying similar dynamics with respect to the 
HIV/AIDS epidemic in Sub-Saharan Africa, Helle-
ringer and Kohler collected information on up to five 
recent sexual partners of the residents of seven villages 
located on an island in Lake Malawi (67). They found 
that, contrary to expectations, residents reported rela-
tively few partners. Despite this finding, upon map-
ping the resulting sexual network, they discovered that 
a striking 65% of the population aged 18-35 was con-
nected in one large interconnected component. How-
ever, unlike in the Bearman and Moody study, this 
large component was strikingly robust to the removal 
of individual ties or nodes as a result of numerous 
redundant paths (i.e., instances in which respondents 
directly or indirectly shared more than one sexual 
partner). Yet, like Bearman and Moody, Helleringer 
and Kohler failed to find evidence of high activity 
hubs, that is, persons or groups capable of sustaining 
the HIV/AIDS epidemic by having many sexual 
partners. As they note, their findings thus call into 
question the assumption behind much HIV work in 
Sub-Saharan Africa, that the current epidemic is driven 
either by a high activity core made up of sex workers 
and their patrons or by other high activity individuals 
transmitting disease to a low activity “periphery” made 
up of individuals with one or few partners. 
 In addition to the insights they provide into mecha-
nisms underlying the spread of STDs and, consequent-
ly, methods for possible containment, these studies are 
important for demonstrating the value of collecting 
sociocentric network data (as opposed to egocentric 
network data collected from a series of not necessarily 
inter-connected individuals). Without sociocentric da-
ta, the contact macrostructure through which infectious 
disease – or, alternatively, influence, information, or 
other socially transmissible constructs – must flow 
could not be mapped and understood. 
 
 
SOURCES OF NETWORK DATA 
 
Collecting network data is not easy, especially if a full 
sociocentric study is done and especially if the inten-
tion is that it be longitudinal. Therefore, people are 
beginning to explore the use of readily available or 
extant data, such as that available using social network 
websites such as Facebook or MySpace (68,69) or mo-
bile phone networks (70) or perhaps overlapping lists 
of memberships in organizations or clubs or lists of 
users of public services. Such sources of data would 
allow us to visualize enormous networks composed of 
hundreds of thousands of people and to intervene on 
them as well. 
 Ethical problems will inevitably arise with using 
such network data, particularly with respect to con-
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cerns about anonymity. However, a more thorough-
going ethical issue is suggested by the very nature of 
network health effects: more connected individuals 
may be more valuable or more worthy of receiving 
medical care, given the effect they have on others (71). 
Moreover, health care delivered to the well connected 
is clearly more cost-effective since the effect such 
individuals have on others results in more “Quality 
Adjusted Life Years” per dollar spent (72,73). 
 
 
PROVIDER NETWORKS 
 
One can use similar methods to those we have dis-
cussed in order to visualize networks of health care 
providers, such as doctors in a community who consult 
each other or who share patients (74), or hospitals that 
transfer patients to each other. Such networks have 
important implications. For example, physicians’ loca-
tions within networks of colleagues may serve to make 
some physicians aware of innovations in medicine 
sooner than others (75). Local opinion leaders occu-
pying strategic, central network positions may disse-

minate influential assessments of both established and 
innovative medical regimens (76). Physicians may also 
look to nearby role models within their social networks 
for guidance in treating their patients (77,78). Social 
networks therefore can shape health care delivery. 
 
 
CONCLUSION 
 
People are interconnected and so their health is inter-
connected. The recognition that people are embedded 
in social networks means that the health and well 
being of one person affects the health and wellbeing of 
others. This fundamental fact of existence provides a 
fundamental conceptual justification for the field of 
public health. Visualizing social networks and the 
health-relevant phenomena that transpire within them 
provides a new way to understand the epidemiological 
determinants of illness and wellbeing. 
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