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ABSTRACT  

Health investigators routinely collect DNA and environmental data from study participants in order to assess 
the impact of genetic and environmental risk factors on an outcome of interest. When planning a study, 
alternate study designs are evaluated to minimize bias and achieve a large enough sample size from available 
resources. With the enormous volumes of high-quality biomedical data housed within its numerous biobanks, 
Norway is particularly well-suited to spearhead the investigation of a wide array of exposures and outcomes 
in a systematic manner. The rich array of longitudinal phenotypic data also permits an assessment of gene-
environment-timing interactions. Maximizing the research potential inherent in Norwegian biobanks is the 
overarching aim of Biobank Norway, an infrastructure project recently funded by the Norwegian Research 
Council. The development of advanced statistical tools for the analysis of high-throughput genomic data is 
critical to fulfill this aim and biostatistics platforms have been key elements of major biobank harmonization 
initiatives. However, many of these approaches have focused on traditional case-control designs. To exploit 
the particular advantages inherent in the Norwegian Mother and Child Cohort Study (MoBa), we describe 
here models to analyze the special data configurations available with offspring-parent designs. These models 
and the statistical tools outlined in this review were developed through the support of Biohealth Norway, a 
biobank platform funded by the Norwegian Functional Genomics Research Program (FUGE). 
 
 

INTRODUCTION AND BACKGROUND 
 
Most epidemiologists have now become accustomed to 
modeling the effect of an allele or haplotype in just the 
same way as they would normally model an environ-
mental exposure. Certain aspects of genetic variation 
are, however, intrinsically different from other types of 
exposure. Whereas genotypes are naturally randomized 
through meiosis and remain stable over time, environ-
mental exposures may be subject to seasonal variations 
and lifestyle/behavioral changes. Nationwide prospec-
tive pregnancy and birth cohorts, such as the Norwegi-
an Autism Birth Cohort (ABC) Study, are particularly 
attractive because they allow studies of GxE interac-
tion and epigenetics in a temporal context (1,2). The 
current review focuses on a special study design that 
involves the collection of genetic and environmental 
data on a group of affected offspring (also termed “ca-
ses”) and their biological parents, and a corresponding 
group of unaffected offspring and their biological pa-
rents (Figure 1). Collectively, we refer to these nuclear 
family collections as “offspring-parent triads” through-
out this paper. 
 A prerequisite for the offspring-parent triad app-
roach is that it must be possible to obtain DNA from 
the child’s parents. This is not always possible if the 
disease in question is late-onset such that the offspring 
themselves are adults as, for example, is the case with 

Alzheimer’s disease. However, if recruitment occurs 
through a child treatment center, for example a surgical 
unit treating babies with orofacial clefts, the parents 
will often be involved and present at the center, creating 
both opportunity and motivation to donate biological 
specimens. Even if DNA is not available from one or 
 
 

 
Figure 1.  The “hybrid design” for family-based associ-
ation analyses. The hybrid design consists of a case-
parent triad and a control-parent triad. The genotypes of 
the parents and offspring are known for a SNP at an 
autosomal locus, with A representing the common allele 
and a the variant allele. Under Mendelian transmission, 
the probability of an AA genotype is the same as that of 
aA in both the case-parent and control-parent triads. How-
ever, if the trait is associated with a particular genotype, 
its distribution among cases will differ from that expected 
under Mendelian transmission. The analysis consists of 
testing for this asymmetry. 
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more family members, data from incomplete triads can 
still be used by applying a statistical procedure that 
accounts for the missing genotypes. The offspring-
parent triad design is therefore particularly well-suited 
for studies of birth defects such as orofacial clefts (3) 
and neural tube defects (4), and pregnancy-related con-
ditions such as pre-eclampsia (5) and prematurity (6).  
 In this review, we use a large population-based stu-
dy of orofacial clefts in Norway to illustrate the utility 
of offspring-parent triads in exploring different causal 
scenarios, including fetal and maternal gene-effects, 
gene-gene (GxG) interaction, and gene-environment 
(GxE) interaction. The paper includes a tutorial on how 
to perform the analyses using “Haplin” – a statistical 
software package specifically designed for analyzing 
genetic and environmental exposures in offspring-
parent triads and case-control collections [Gjessing et 
al. (7)]. We apply a novel “hybrid design” that combi-
nes the merits of the case-control and offspring-parent 
triad designs. Not only does this hybrid design enhance 
statistical power by providing more controls per case, 
it also allows an estimation of the main effect of an 
exposure. Lastly, we discuss opportunities and challen-
ges in using offspring-parent triads to analyze genome-
wide data. Although the focus of this paper is on oro-
facial clefts, all the methods presented herein can 
easily be adapted to the study of other complex traits. 
 
 
THE CASE-PARENT TRIAD DESIGN 
 
Perhaps the most common approach to genetic associ-
ation analysis is the standard case-control design, in 
which only case children and independent control 
children are used. Comparing allele frequencies of 
cases and controls can reveal loci associated with 
disease. An inherent danger of the case-control design, 
though, is population stratification, where marker allele 
frequencies vary across unrecognized subpopulations in 
the case and control groups, producing a spurious asso-
ciation between genotype and disease. However, the 
true impact of population substructure in well-designed 
case-control studies is up for debate (8,9). 
 One way to control for population stratification is to 
use only case-parent triads, i.e. genotyping case children 
and their parents, but leaving out the unaffected 
control-parent triads. Case-parent triads avoid the 
problem of population stratification by effectively using 
non-transmitted parental alleles as controls, to be 
compared with the alleles transmitted to the case child. 
In this setting, both “case” and “control” alleles derive 
from the same individuals and are thereby guaranteed 
to be selected from the same population subgroup. 
While not quite as (statistically) effective as the case-
control design, the case-parent triad design allows an 
investigation of a range of causal scenarios with relat-
ively high precision. These include fetal and maternal 
gene-effects, parent-of-origin effects, and the effects of 
GxG and GxE interaction. For instance, GxE interac-
tion can be assessed simply by estimating the gene-
effects in exposed and unexposed groups separately 

and then comparing the results. 
 Even for the case-parent triad design there are 
assumptions that should be met, however. It depends 
heavily on Mendelian transmission, so that to be valid, 
the probability of an offspring receiving any of the three 
possible genotypes from a particular parental mating 
type must follow Mendelian probabilities in the popu-
lation (10). An example where this would be violated 
is when homozygosity for a variant allele increases the 
risk of early fetal death. If that is the case, live-born 
cases under study will appear to lack that particular va-
riant, giving the impression that the genetic variant is 
related to the phenotype (11). In particular, this could 
lead to bias in studies of genes influencing preterm 
births, since very preterm births may be registered as 
spontaneous abortions, not preterm births.  
 For the investigation of maternal effects to be valid 
in the case-parent design, mating must be symmetric 
with regard to genotype. This means that the frequency 
of Aa mothers married to AA fathers should not differ 
significantly from the frequency of Aa fathers married 
to AA mothers. This assumption is needed because the 
distribution of the variant allele in mothers is compa-
red to a null model in which the maternal and paternal 
allele counts are symmetric within each mating type 
(11). 
 For a valid estimation of GxE interaction, the geno-
type and environmental exposure must be independent, 
conditional on parental genotypes (10). In practice, 
this means that most situations where genes and envi-
ronment are correlated in the population “at large” are 
unproblematic. Distortions may occur, however, if the 
genetic variant also influences an individual’s tenden-
cy to be exposed, either through appetite or aversion 
(12,13). A good example is a person’s aversion toward 
heavy alcohol-drinking, which appears to be correlated 
with a genetically-determined slower detoxification of 
alcohol (14).  
 
 
THE HYBRID DESIGN 
 
A notable limitation of the case-parent triad only de-
sign is its inability to assess the main effect of an envi-
ronmental exposure. Comparing genetic effects in the 
exposed and unexposed triads will reveal interactions, 
but does not elucidate whether the environmental 
exposure is protective or harmful. In other words, the 
direction of the effect is not known. While the case-
parent triad design protects against population 
stratification, the downside is lower efficiency than a 
case-control design. As a rule of thumb, a case-control 
children pair (two individuals to be genotyped) 
provides the same power as a full case-parent triad 
(three individuals to be genotyped). 
 As a consequence, various “hybrid designs” have 
been proposed to combine the merits of the case-parent 
triad and case-control design. The full hybrid design 
involves complete case-parent triads together with 
complete control-parent triads, not necessarily the 
same number of controls as cases. Truncated versions 
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of the hybrid design have also been suggested, such as 
leaving out the control child (and only genotype 
his/her parents), leaving out the control father, or using 
case-mother dyads together with control-mother dyads 
(15-18).  
 In contrast to the case-parent triad design, the hyb-
rid design allows the main effect of an exposure to be 
estimated because it involves independent controls. The 
controls in turn add more statistical power to the ana-
lyses. As a rule of thumb, a complete case-parent triad 
provides two transmitted case alleles and two non-
transmitted control alleles. Adding a complete control-
parent triad adds four independent control alleles, 
since the alleles carried by the control child are already 
present in his/her parents. Hence, a complete control-
parent triad counts as two full controls (16) (Figure 1).  
 The hybrid design can also be used to estimate ge-
netic effects for loci that exhibit deviations from Men-
delian transmission. This is done by comparing the 
relative risk in the case-parent triads with the relative 
risk estimated from the control-parent triads. The 
control-parent triads should reveal the size of the devi-
ation and thus serve as a baseline. 
 The implementation of the hybrid design in Haplin 
makes the standard “rare disease assumption”, which 
allows relative risks and odds ratios to be used inter-
changeably. This is what enables the relative risk esti-
mates from the case-parent triads to be combined with 
odds ratio estimates deriving from the case-control 
comparison. This assumption is reasonable for orofacial 
clefts, given the relatively low overall risks of CL/P 
and CPO. 
 While the hybrid design draws advantages from both 
the case-parent and the case-control designs, it is also 
to some extent influenced by population stratification. 
Since it incorporates a case-control component, the 
bias in the latter may creep into the overall estimate. 
Although the effect is lower than for the case-control 
design alone, it may still be noticeable. 
 
 
SOFTWARE 
 
A multitude of computer programs have been deve-
loped for statistical association analyses, in particular 
for the traditional case-control design. For case-parent 
triad analyses, the selection is somewhat more limited, 
and even more so regarding software that can handle 
hybrid designs. Most of the analyses described above 
can be done using Haplin – a statistical software speci-
fically designed for analyzing genetic and environ-
mental exposures in offspring-parent triads and case-
control collections (7). It is based on log-linear model-
ing as originally described in (10-13,19-23), and was 
one of the first statistical software to extend the case-
parent triad approach to consider haplotypes in a gene 
or region of interest. Although phase is not known 
from the observed SNP genotypes alone, Haplin can 
reconstruct haplotypes from the multi-SNP data and 
estimate the relative risk associated with a given 
haplotype. This is particularly advantageous over other 

competing methods that only provide a test of signifi-
cance. Haplin is also equipped with an optimal imputa-
tion procedure to account for missing genotypes in a 
particular triad, providing additional flexibility if a 
SNP fails to be assayed in an individual or a parent 
chooses not to participate in the study.  
 Haplin is implemented in the publicly available R 
statistical package (24) and is freely downloadable 
from our web site at http://www.uib.no/smis/gjessing/ 
genetics/software/haplin. A user-friendly graphical user 
interface (GUI), which includes some (but not all) of 
the Haplin functionalities, is also available at http:// 
haplin.fhi.no. 
 
 
A MAXIMUM LIKELIHOOD APPROACH TO 
ESTIMATION 
 
Haplin implements a full maximum likelihood (ML) 
model for estimation. While other tests may be easier 
to implement and faster to estimate, the ML approach 
provides a full estimation framework. As a consequen-
ce, Haplin can compute explicit estimates of relative 
risks, with asymptotic standard errors and confidence 
intervals. A likelihood ratio test (LRT), Wald test, or 
score test can be used for contrasting two or more sta-
tistical models. In addition, the expectation maximiza-
tion (EM) algorithm can be used for imputation, which 
consists of filling in genotype data that are missing at 
random (due to failed genotyping), reconstructing 
unknown haplotype phase, or even imputing data on 
family members missing “by design” – for instance if 
case-fathers were not available for genotyping.  
 At the heart of Haplin is a generalized linear model 
(glm) being estimated from the observed genotype fre-
quencies. This is the M-step of the EM algorithm. The 
E-step consists of all three types of imputations, per-
formed in a single step. The algorithm then alternates 
between the M-step and the E-step until convergence 
is achieved. The results obtained from the EM algo-
rithm correspond to the maximum likelihood estimates 
of the model, which include gene frequencies and all 
relative risk parameters. However, to obtain correct 
standard errors, confidence intervals and LRT for the 
models, Haplin corrects for the fact that imputation has 
taken place. If the imputed data were used uncorrected, 
they would seem to contain more information than 
what is actually available in the raw data. This is ad-
justed for in the final output.  
 Finally, for studying GxE interaction, the Wald test 
is flexible in that it allows a comparison of any set of 
estimated parameters across two or more strata of ex-
posure. The LRT can be useful as an additional check 
for model implementation and estimation. 
 
 
MULTIPLE TESTING 
 
In standard epidemiological analyses, multiple testing 
is rarely made an issue. Even if researchers in practice 
often “dig around” for anything apparently significant 
to report, this is usually not taken into account when 
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publishing results. As a consequence, a large number 
of reported associations will be false positives that fail 
to replicate beyond the initial publication. In genetic 
epidemiology, this problem escalates to a degree where 
corrections must be performed, regardless of how 
tempting the initial results may be. As an illustration, a 
genome-wide association study (GWAS) will produce, 
say, 1 million different p-values, most of which will 
represent SNPs totally unrelated to disease. If a line for 
significance is drawn at, say, the customary 5%, then 
about 50,000 false positives will appear, completely 
obscuring any true positive results. It is clear that this 
situation is untenable, and appropriate measures must 
be taken. 
 The most obvious way to overcome the multiple-
testing problem is to increase the sample size. With a 
large sample size, the true signals will generate p-
values that are very small, for instance in the order of 
10-7 or smaller. In that case, the line for significance 
can be set much lower, and the SNP that are still 
significant are likely to be true signals. Samples could 
also be used more effectively in, for instance, two-
stage designs, where only the apparently significant 
SNPs from the first stage are genotyped and verified in 
the second stage. 
 The large number of SNPs available in a GWAS 
study means that the traditional statistical testing 
regime is less relevant, since a priori most associations 
would be expected to be negative. A more sophisti-
cated approach is through the control of the false 
discovery rate (FDR) criterion proposed by Storey and 
co-workers (25). This leads to a set of “q-values” to 
replace the original p-values. The q-values thus relate 
to the false discovery rate, whereas p-values relate to 
the type I error in standard testing. In general, the 
multiple-testing problem can be approached through 
an empirical Bayes approach (26). 
 Another helpful tool is the quantile-quantile (QQ) 
plot, which can be used to inspect visually whether 
association analyses have produced more significant p-
values than expected by chance. This represents a sim-
pler alternative to using a full correction for multiple-
testing. If none of the markers are associated with risk, 
the p-values in a QQ plot are expected to fall along the 
straight sloping line representing the null distribution. 
They would otherwise fall above this line at the most 
significant end of the QQ plot. In Haplin, the function 
pQQ is used to produce QQ plots. 
 
 
OROFACIAL CLEFTS 
 
As our prime example, we will study orofacial clefts, 
which is determined prenatally and possibly determined 
by fetal, maternal, and/or environmental effects. As a 
prelude to the tutorial, we first provide a brief intro-
duction to orofacial clefts, followed by a description of 
the Norwegian Facial Clefts Study (NCL). More details 
on the study can be found at www.niehs.nih.gov/ 
research/atniehs/labs/epi/studies/ncl/index.cfm. 

Orofacial clefts: A common birth defect of complex 
etiology  
Orofacial clefts include cleft lip (CL), cleft lip and 
palate (CLP) and cleft palate only (CPO). Because CL 
and CLP are regarded as variants of the same defect, 
only differing in severity, they are routinely lumped 
together to form the single group of cleft lip with or 
without cleft palate (CL/P). Collectively, these defects 
are the most common craniofacial birth defects in hu-
mans, affecting approximately 1/800 live births world-
wide (3). Despite corrective surgery, patients experi-
ence a lifetime of functional, social and aesthetic chal-
lenges. The extensive medical and behavioral interven-
tions needed to treat these defects impose a substantial 
economic and personal health burden which can per-
sist from infancy to childhood and throughout life (28, 
29). Not only are clefts the single most common cranio-
facial birth defects, they also appear to be associated 
with a higher risk of cancer in later life and an increa-
sed overall mortality well into adulthood (30-34). 
 The risk of recurrence of clefts is 30-40 times higher 
among those with an affected first-degree relative com-
pared with the background population (35-38). A large 
Danish twin study recently reported heritability esti-
mates of 91% for CL/P and 90% for CPO (36). The 
same study also found relatively small environmental 
contributions for either type of clefts, with 9% for 
CL/P and 10% for CPO respectively. 
 These and other related studies [reviewed in (3,39)] 
point to a very strong genetic component to clefting. 
Although the environmental contribution is likely to be 
smaller (36), assessing the joint impact of environmen-
tal risk factors and susceptibility alleles is important in 
solving the riddle of why some babies are born with 
clefts whereas the vast majority are not. 
 
Study participants, candidate genes, and SNPs  
We use offspring-parent triads collected in a nation-
wide case-control study of orofacial clefts in Norway 
(1996-2001). Mothers of babies with clefts were invi-
ted to participate in the study through the two surgical 
clinics appointed to treat all clefts in Norway. The par-
ticipation rate was 88%, and 377 cases with CL/P and 
196 cases with cleft palate (CPO) were recruited. Du-
ring the same years, controls were randomly selected 
from all live births recorded in the Norwegian Medical 
Birth Registry. Of 1006 eligible control-mothers, 76% 
(N = 763) agreed to participate [see (40) for further de-
tail]. Genotypes were available for 1536 SNPs in 357 
candidate genes for orofacial cleft (41). The complete 
lists of genes and SNPs are provided in Supplementary 
Tables S1 and S2 of the original article (41).  
 For genome-wide analyses, we use a collection of 
case-parent triads from a recently conducted GWAS 
on orofacial clefts (42). These triads were recruited 
from seven Asian and six European/US recruitment 
sites (13 populations in total). Offspring-parent triads 
from the Norwegian study represent one of the Eu-
ropean nodes in this international cleft consortium 
[details are provided in (42)]. 
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TUTORIAL 
 
In the next sections, we provide an informal tutorial on 
how to approach the various analytical issues dis-
cussed above, with practical examples using Haplin to 
analyze the clefts data. We describe each causal 
scenario in greater detail before providing practical 
examples. The main objectives are to estimate the 
effects of fetal and maternal genes, the effects of im-
printing, X-linked genes, and the effects of GxG and 
GxE interactions. 
 
 
ESTABLISHING GENE FREQUENCIES 
 
Our model for risk estimation needs to establish the 
gene frequencies in the “background” population, i.e. 
the population at large, without reference to disease. 
This is used to provide a “baseline” for the gene fre-
quencies, against which the gene frequency of, say, 
cases can be compared. In Haplin, SNP or haplotype 
frequencies are estimated as part of a full maximum 
likelihood model, jointly with genetic risk estimates, 
and reported as part of the output. Gene frequencies 
may be useful for instance in error-checking, for com-
paring a locus across populations, and for assessing the 
attributable risk associated with a particular locus. The 
following issues should be kept in mind, however: 
 
• To reduce model complexity, Haplin typically as-

sumes Hardy-Weinberg equilibrium (HWE), which 
in effect assumes that genotype frequencies for pairs 
of alleles can be computed as the product of the in-
dividual allele frequencies. This is a natural assump-
tion in randomly mating populations, but may be 
more controversial in populations with substruc-
tures. Haplin makes an initial test for HWE at each 
locus before estimating the model. 

• In data generated from standard SNP platforms, hap-
lotypes are unphased and only SNPs are observed 
directly, not the full haplotypes. Haplin estimates 
haplotype frequencies by assuming HWE and impu-
ting the unknown phase using the EM algorithm, in 
much the same way as missing genotypes are im-
puted. 

• For a haplotype analysis to make sense, it is assu-
med that SNPs are in close linkage disequilibrium 
(LD), so that there is a low likelihood of recombina-
tion within a haplotype in one generation. 

• With K SNPs, 2K different haplotypes can in prin-
ciple be constructed. With, say, 10 SNPs one could 
possibly observe 1024 different haplotypes, in various 
pairings within a genotype. In practice, only a hand-
ful of haplotypes will actually be observed in a 
population. Including too many SNPs in an analysis 
will only lead to too many possible haplotypes, with 
each haplotype being very unlikely. It hardly makes 
sense to include more than 5-7 SNPs in a haplotype 
analysis, depending on the degree of LD. A better 
approach is to use sliding windows of haplotypes, as 
described below.  

All Haplin analyses incorporate an estimation of gene 
frequencies; no additional arguments need to be speci-
fied. 
 
 
DESIGN, DATA STRUCTURE, AND MISSING DATA 
 
Haplin analysis requires that the data are organized in 
a special format. For the case-parent triad data, Haplin 
uses three data columns for each marker, with geno-
types for mother, father, and child, respectively, from 
left to right. A second marker should be placed to the 
right of the first marker, and so on so forth. Additional 
information, such as exposure variables, sex, and case-
control status should be placed in separate columns to 
the left of the genetic data. The data structure is descri-
bed in detail at our web site (http://www.uib.no/smis/ 
gjessing/genetics/software/haplin/). To simplify data 
handling, the function pedToHaplin transforms data 
from a text file in the commonly used ped format into 
a text file in the Haplin format. 
 The default design in Haplin is the case-parent triad. 
It requires three columns for each marker and no addi-
tional columns need to be supplied. Missing genotypes 
are specified with an “NA” in place of the genotype. 
For case-mother dyads, i.e. when the father’s genotype 
is not available, all genotypes for the father should be 
set to “NA”. The standard design is specified with 
design = “triad”, but for the default design this is 
not necessary. 
 If the design includes independent control-parent 
triads, the data are placed in the same columns as the 
case-parent triad data. In addition, a column with 0 
(controls) and 1 (cases) is placed to the left of the 
genetic data to identify cases and controls. The design 
is specified with design = “cc.triad”. This repre-
sents the complete “hybrid” design. If only control-
children are available, not control-parents, columns for 
the parents should be included, but set to “NA” for 
missing data. The design is still specified as “cc. 
triad”. The same approach should be followed for 
two other recommended hybrid designs (16,18), where 
only control-mother dyads or only control parents are 
available. 
 Finally, if the design is the standard case-control de-
sign, with no parental information, the data file should 
contain one column for the genotype at each marker. 
To the left of the genetic data, there should be at least 
a column with the case-control information. In this case, 
the design is specified simply as design = “cc”. 
Note that if genotypes of both case-mothers and 
control-mothers are available, the analysis is common-
ly done by using only the maternal data with a “cc” 
design. However, if fetal (and perhaps also paternal) 
genotype data are available, it is recommended to use 
the hybrid design as described above. This allows cor-
recting any maternal genetic effects for possible fetal 
effects of the same genes. 
 An X-chromosome analysis requires gender of the 
child to be specified, using a separate column with 1 
(males) and 2 (females). In addition, the argument 
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xchrom = T must be set. If the data file uses a case-
control variable and/or a sex variable, their column 
positions (counted from left to right) in the data file 
must be specified using, for instance, ccvar = 1, 
sex = 2, to specify the first and second columns, res-
pectively. In addition, n.vars = 3 is used to tell 
Haplin that there is (for instance) three columns of 
data to the left of the genetic data. 
 Haplin uses an EM-algorithm to impute data, 
whether they are randomly missing genotypes, missing 
phase information for the haplotypes, or data missing 
“by design” (for instance if fathers have not been 
genotyped). To instruct Haplin to impute data, set the 
argument use.missing = T. Note that imputation is 
by default turned off. Families or SNPs with a large 
proportion of missing data should preferably be re-
moved before analysis, since Haplin spends a fairly 
large amount of computational power to impute such 
data. 
 
 
FETAL GENE-EFFECTS 
 
The most obvious question in a genetic study of clefts 
is whether the genes of the fetus directly influence the 
risk. The risk associated with a single locus can be es-
timated as an increased risk of clefts for one genotype 
relative to the others. The actual risk of being born 
with clefts cannot be computed from the offspring-
parent triad design alone without knowing the back-
ground population from which the cases are selected. 
However, the relative risks obtained when comparing 
one genotype to another can be computed both from 
the pure case-parent triad design and clearly also from 
the hybrid design which involves additional indepen-
dent controls. 
 As a concrete example, when looking at a single 
SNP, say with major allele C and minor allele T, there 
are three possible genotypes: CC, CT, and TT. If CC is 
chosen as the reference genotype, one can estimate re-
lative risks RRCT and RRTT associated with genotypes 
CT and TT, respectively. If the T variant increases the 
risk, these relative risks will typically be larger than 
1.0, whereas if C increases risk they will typically be 
less than 1.0. Haplin allows estimation of both RRs 
separately, or with the assumption of a dose-response 
model where RRTT = RRCT

2, i.e. a multiplicative risk 
model. 
 Looking at a locus with multiple alleles, such as 
haplotypes over a set of SNPs, the model is more com-
plicated since haplotypes combine in pairs, and with, 
say, 7 different haplotypes at a locus, it is possible to 
form 7(7+1)/2=28 different pairs of haplotypes as a 
genotype. Some of these pairs will be virtually non-
existent. To reduce the modeling complexity, Haplin 
estimates two relative risks associated with each hap-
lotype, one for a single dose and one for a double dose 
of that haplotype. As default, a haplotype is compared 
to the “average” of the other haplotypes, so that all ot-
her haplotypes serve as a combined reference category. 

This is referred to as a “reciprocal reference”. As for 
the single SNP model, the RR parameters for multiple 
haplotypes can be assumed multiplicative, i.e. to fol-
low a dose-response model. 
 A dose-response model in Haplin is specified 
through the argument response = “mult”. By de-
fault Haplin will estimate single and double doses se-
parately, but assuming a multiplicative dose-response 
model may increase power by reducing the number of 
parameters to be estimated. 
 
Haplin example  
For a pure case-parent triad design, the simplest model 
in Haplin can be estimated with the command: 
haplin(“C:/work/data.dat”) 
 Only the file name needs specification, all other 
arguments are chosen as default. If the data file con-
tains more than one marker, the relevant marker (SNP) 
can be specified using: 
haplin(“C:/work/data.dat”, marker = 2) 
 If no marker is specified in a multi-marker file, 
Haplin automatically builds haplotypes from all the 
available markers. Note that this may become too 
computer-intensive (and also meaningless) if too many 
markers are included, for the reasons discussed above. 
If data is missing from the file, typically when geno-
typing has failed or a family member has not been 
genotyped, missing data can be imputed using the 
use.missing argument: 
haplin(“C:/work/data.dat”, marker = 2, 
use.missing = T) 
 When Haplin runs, the first output is summary in-
formation on data and markers, followed by more 
detailed estimation results. Below is an excerpt of the 
analysis output for marker 1 for the interferon regula-
tory 6 (IRF6) gene, where we have used the Norwe-
gian data on orofacial clefts: 
haplin(“C:/work/data.dat”, marker = 1, 
response = “mult”, use.missing = T, design 
= “cc.triad”, n.vars = 7, ccvar = 2) 
 
----Data summary:---- 
There were 17 rows with missing data 
All rows retained in analysis 
 
Number of triads in original file: 114 
 
Accounting for possible loss of triads: 
 Cause of loss  Triads removed  Triads remaining 
 Missing data                0               114 
 Mendelian incons.           0               114 
 
Triads remaining for analysis: 114 
 
Haplin has thus found 114 triads in the file, of which 
17 contained missing data. However, all triads were 
retained in the analysis, with missing data imputed. 
There were no Mendelian inconsistencies. The output 
then continues: 
 
----Estimation results:---- 
Number of haplotypes: 2 
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Figure 2.  Fetal gene-effects. Estimated relative risks of isolated cleft palate only (CPO) among 114 
babies carrying a single or double dose of the variant allele a versus carrying none (allele B is the 
reference). Vertical bars represent 95% confidence intervals, shown on a logarithmic scale. 

 
 
Haplotype frequencies with 95% 
confidence intervals: 
 Haplotype  Frequency(%)  lower  upper 
 a           35.5         29.3   42.4 
 B           64.5         57.6   70.7 
 
There are two “haplotypes” in a single SNP, here 
generically coded as “a” and “B” (the uppercase “B” is 
used to designate the most frequent allele). Then the 
relative risk estimates follow: 
 
Single and double dose effects (Relative Risk, 
RR) with 95% confidence intervals: 
 
----Child haplotypes---- 
 Haplotype  Dose  RR   Lower CI  Upper CI  P-value    
 a          S     1.31  0.866     1.96      0.201 
 a          D     1.71  0.75      3.82      0.201 
                                                     
 B          S     REF 
 B          D     REF 
 
Allele ‘B’ is here chosen as reference. Having a single 
dose (S) of allele “a” thus increases the risk of clefts 
1.31-fold. Note that this particular analysis assumes a 
dose-response relationship, which means that the 
relative risk associated with a double dose (D) of “a” 
equals 1.312 = 1.71. This property is also reflected in a 
common p-value, 0.201, for both single and double 
dose. The result is non-significant (Figure 2). 

MATERNAL GENE-EFFECTS 
 
It is important to consider the role of maternal genetic 
factors when assessing risk, because the mother’s 
genotypes partially controls the in utero environment 
of the developing fetus (7,11,12,23). Studies in animal 
models have demonstrated an ability of maternal gene 
products to directly intervene and protect the fetus. 
Specifically, Letterio et al. (43) showed that maternal 
Tgfb1 was able to cross the placenta and rescue   
Tgfb1-/- mice. Similar observations were made in an 
earlier experiment that tested whether maternal epi-
dermal growth factor (Egf) could be transported to the 
fetus via the placenta (44). 
 The offspring-parent triad design allows a straight-
forward modeling of both maternal and fetal gene-
effects without confounding from one another (41,45-
52). There are several ways in which a variant allele 
may increase risk [adapted from (53)]:   
• The variant allele increases risk only if carried by the 

fetus (contributing to a “fetal gene-effect”). As the 
variant allele in the parents does not contribute to 
risk, it will be over-represented in cases compared to 
the biological parents. 

• The variant allele increases risk only if carried by the 
mother (contributing to a “maternal gene-effect”). 
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The variant allele will be over-represented in case 
mothers compared with the case fathers.  

• The variant allele increases risk both when carried 
by the fetus and by the mother. The model in Haplin 
then assumes that the relative risks for the fetal and 
maternal contributions can be multiplied together to 
obtain the joint risk of disease. This is akin to a logis-
tic regression where several exposures can be inclu-
ded and adjusted for one another, and allows estima-
ting both fetal and maternal risk when controlling 
for possible confounding with one another.  

Haplin example  
Including maternal effects in the Haplin analysis is 
simple. The argument maternal should be set to true, 
otherwise the analysis is unchanged: 
haplin(“C:/work/data.dat”, maternal = T) 
 Below are the relative risk estimates for the same 
analysis as in the previous example (marker 1 of the 
IRF6 gene), with the difference that maternal effects 
are included, and there is no assumption about a dose-
response relationship: 
haplin(“C:/work/data.dat”, marker = 1, 
use.missing = T, design = “cc.triad”, 
n.vars = 7, ccvar = 2, maternal = T) 
 
----Child haplotypes---- 
 Haplotype  Dose  RR   Lower CI  Upper CI  P-value    
 a          S     1.88  1.13      3.15      0.0182     
 a          D     1.32  0.546     3.12      0.542      
  
 B          S     REF  
 B          D     REF  
  
----Maternal haplotypes---- 
 Haplotype  Dose  RR   Lower CI  Upper CI  P-value    
 a          S     1.27  0.802     2.04      0.311      
 a          D     0.848 0.386     1.84      0.688      
  
 B          S     REF  
 B          D     REF  
 
Again, it appears that a single dose of “a” in the fetus 
increases the risk of clefting, this time as much as 
1.88, and with a borderline significance. A double dose 
does not seem to increase the risk any further, so the 
effect of “a” appears to be more dominant than dose-
response. However, it should be kept in mind that the 
separate double dose relative risk estimates are often 
unstable if the minor allele frequency is exceedingly 
low or the sample size is too small. This is reflected in 
the wide confidence interval for the double dose esti-
mate. In this example, maternal alleles do not seem to 
have any significant effect. 
 In addition to the text output, Haplin also produces 
a plot of the relative risks for both fetal and maternal 
effects (Figure 3). 
 
 
EFFECTS OF X-LINKED GENES 
 
Most association analyses have primarily targeted auto-
somal markers, most likely because the vast majority 
of statistical methods for association analysis were ori-
ginally designed for autosomal markers. The discovery 

that genetic variants on the X-chromosome may be as-
sociated with several complex traits has prompted the 
development of a variety of statistical methods for ana-
lysis of X-linked markers. The majority of these met-
hods are extensions of the transmission/disequilibrium 
test (TDT) and include the following: (i) X-linked sib-
ling TDT (XS-TDT) (54); (ii) reconstruction-combined 
TDT for X-chromosome markers (XRC-TDT) (55); 
(iii) X-linkage TDT test (X-TDT) (56); and (iv) X-
chromosome pedigree disequilibrium test (XPDT) 
(57). Two other tests, the “association in the presence 
of linkage (APL) test that accommodates X-chromo-
some markers” (X-APL) (58) and the "X-linked quanti-
tative trait loci linkage mapping" (X-QTL) (59), are 
based on comparing observed vs. expected distribu-
tions of a specific allele or haplotype in affected sib-
lings, conditional on the parental genotypes. Because 
these methods are based on the TDT, they can only pro-
vide a p-value for association and not estimates of gene-
tic risk. One exception is the likelihood ratio test (LRT) 
of association for X-linked markers (X-LRT) (60).  
 We have implemented a new functionality in Haplin 
to enable association analysis of X-linked markers. 
The model is similar to the X-LRT approach, but we 
extend the model to haplotypes and a selection of gene-
effect models. We can test five separate models as out-
lined in Table 1, assuming common or different para-
meters for boys and girls:   
• Model 1: Common baseline risk, common relative 

risk, no X-inactivation (1 parameter to be estima-
ted) 

• Model 2: Different baseline risks, common relative 
risk, no X-inactivation (2 parameters) 

• Model 3: Different baseline risks, different relative 
risks, no X-inactivation (3 parameters) 

• Model 4: Different baseline risks, common relative 
risk, X-inactivation (2 parameters) 

• Model 5: Different baseline risks, different relative 
risks, X-inactivation. This is the “free model” with 
4 parameters to be estimated.  

Note that more parameters require fewer assumptions, 
but fewer parameters result in higher power (assuming 
the model is correct). In Models 4 and 5, we can ac-
count for X-chromosome inactivation, a mechanism by 
which one of the two copies of the X-chromosome in 
females is inactivated to ensure similar gene-dosage 
between the two sexes. Hence, we model the relative 
risk for males with one X2-allele as being equal to that 
of an X2X2 homozygous female (Table 1). We present 
here an example that implements Model 4. Different 
baseline risks are appropriate in this case given the 
higher prevalence of CL/P among males and the higher 
prevalence of CPO among females. 
 
Haplin example  
To do an analysis of markers on the X-chromosome in 
Haplin, one can use a command like the following: 
haplin(“C:/work/data.dat”, xchrom = T, 
nvars = 3, sex = 2, use.missing = T) 
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Figure 3.  Fetal and maternal gene-effects. The upper half of the panel shows relative risk estimates based 
on the baby carrying the variant allele a; the lower half shows the corresponding estimates when the mother 
carries the variant allele a. Vertical bars represent 95% confidence intervals, shown on a logarithmic scale. 

 
 

Table 1.  Assorted parameterization models for X-linked gene analysis.  
 Male case  Female case 
Model X1 X2  X1X1 X1X2 X2X2 
Model 1 B   B * RR  B   B * RR    B * RR2 
Model 2 BM BM * RR  BF BF * RR  BF * RR2 
Model 3 BM   BM * RRM  BF  BF * RRF    BF * RRF

2 
Model 4 BM BM * RR  BF 1/2 * BF * (1 + RR) BF * RR 
Model 5 BM   BM * RRM  BF    BF * RRF1   BF * RRF2 

X1 denotes the common allele and X2 the variant allele at the SNP in a given gene. ‘*’ denotes the product term; 
B represents the common baseline risk for males and females; BM is baseline risk for males only; BF is baseline 
risk for females only; RR is the common relative risk for males and females; RRM is the relative risk for males 
only; and RRF is the relative risk for females only. In Model 4, the risk for an X1X2 female will be an average of 
the two homozygotes, i.e. (BF + BF*RR)/2 = BF(1 + RR)/2. Strictly speaking, this is not a log-linear model, so 
Haplin replaces the heterozygous risk with BF√RR, i.e. the geometric mean of the two homozygous risks. Note 
also that only the ratio of the baseline risks BF/BM can be estimated in the case-parent triad setting. 

 
 
PARENT-OF-ORIGIN EFFECTS AND EFFECTS 
OF IMPRINTED GENES 
 
We can have a parent-of-origin effect if transmission 
distortion to affected offspring is stronger for mothers 
than for fathers (19). As noted above, the mother can 
influence the development of the fetus through the ac-
tion of her own genes and through providing the pre-
natal environment for the fetus. The mother’s genetic 
contributions may be nuclear (genomic imprinting) or 
extra-nuclear (mitochondrial inheritance) (61). Geno-
mic imprinting refers to the situation where certain 

genes are differentially expressed according to whether 
they are inherited from the father or the mother (62). 
This means that although genes from both the mother 
and father are present in the embryo, they do not ope-
rate at the same level.  
 The effect of imprinting ranges from the total inac-
tivation of a gene to its reduced expression in specific 
tissues. Even though the mechanisms underlying geno-
mic imprinting in mammals are still not completely 
understood, they are thought to involve DNA methyla-
tion of cytosine-rich segments. Studies in mice have 
identified an array of genes whose expression are re-
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stricted to either the maternal or paternal allele (62), 
and there is some evidence to suggest that genomic 
imprinting may also control intrauterine embryonic 
growth in humans. Notably, paternally-expressed genes 
appear to be involved in placental development, where-
as maternally-expressed genes appear to influence 
embryonic growth (62). It is therefore important to 
separate maternal gene-effects from the effects of 
imprinting (22).  
 The offspring-parent triad study design can easily 
incorporate tests for parent-of-origin effects (19). To 
test for the effects of imprinting in offspring-parent 
triads, one simply compares the proportion of children 
who receive a copy of the variant allele from the 
mother versus the father (19). A statistically significant 
difference in these proportions does not mean biolo-
gical proof of genomic imprinting. Appropriate biolo-
gical assays are needed to substantiate the statistical 
findings. 
 
Haplin example  
In Haplin, parent-of-origin effects can be estimated by 
comparing the relative risk associated with the allele 
transmitted from the mother with that transmitted from 
the father. The currently distributed version of Haplin 
does not include this functionality, but it is likely to be 
included in an upcoming version. 
 
 
GENE-GENE (GXG) INTERACTION 
 
Segregation analyses have shown that orofacial clefts 
are unlikely to be caused by a single gene (63), but 
rather through the complex interplay of multiple genes 
and environmental factors, each making a minor 
contribution to the overall risk. Traditional linkage-
mapping techniques would therefore face serious 
challenges under this setting. Similarly, if a few major 
genes were to contribute to the risk of clefts, the pre-
sence of other modifying genes that exert small effects 
on the major genes would render linkage mapping 
intractable. 
 Association studies on the other hand are better 
powered than linkage approaches to detect variants of 
more modest effects, provided that the genetic marker 
is close enough to exhibit strong linkage disequilibri-
um (LD) (64,65). Box I details the main differences 
between linkage and association approaches, while 
Box II describes the concept of linkage disequilibrium 
(LD) and its importance in allelic association studies. 
It should be noted, however, that GxG analyses can 
only test for a risk interaction, as opposed to a specific 
interaction between gene products in a given biologi-
cal pathway (66). 
 Finally, it is worth noting that pathway analyses are 
useful in narrowing down the search for significant 
signals by focusing only on SNPs or genes within a 
relevant biological pathway, an approach that also 
allows for more targeted GxG interaction analyses. 
Examples from our own work include investigations of 

the renin (REN) and angiotensinogen (AGT) genes in 
the RAS system that controls blood pressure (67), and 
of genes that metabolize folic acid in the folate 
pathway (68). Pathway-specific databases such as 
KEGG (http://www.genome.jp/kegg/pathway.html), 
PANTHER (http://www.pantherdb.org/pathway), 
INGENUITY Pathways Analysis (IPA; http://www. 
ingenuity.com) or BIOINCARTA (http://cgap.nci.nih. 
gov/Pathways/BioCarta_Pathways) are useful in iden-
tifying genes sharing a common biological pathway. 
 
Haplin example  
The reader is referred to Vefring et al. (5) in which we 
assessed the joint effect of maternal AGT and fetal 
REN haplotypes. Briefly, Haplin was first used to iden-
tify maternal AGT haplotypes that could be associated 
with the risk of preeclampsia. Next, the preeclampsia 
triads were stratified by presence/absence of the mater-
nal AGT risk-haplotype to determine whether the effect 
of fetal REN haplotypes differed significantly across 
strata of maternal AGT haplotype. A LRT was used to 
test for such a difference. 
 
 
GENE-ENVIRONMENT (GXE) INTERACTION 
 
It has long been hypothesized that orofacial clefts re-
sult from the complex interplay of multiple genes and 
environmental factors, but only recently have practical 
approaches become available for robust investigation 
of this hypothesis (3,39). The main rationale for inves-
tigating GxE interaction is to determine the potential 
for public health intervention on environmental fac-
tor(s) which alone could reduce the occurrence (and 
recurrence) of the disorder, particularly in genetically 
susceptible subgroups of the population. This rationale 
is supported by findings in animal models. In mice, for 
example, the spontaneous clefting rate among the cleft-
susceptible CL/Fr strain is about 20% compared to less 
than 10% in the normal C57BL/6J strain. However, 
this rate can easily be increased to almost 100% at 
certain dosages of 6-aminonicotinamide (a vitamin B3 
inhibitor) (69). Just as some mouse strains are more 
susceptible to external teratogens (69,70), human 
fetuses carrying specific high-risk alleles may be more 
sensitive to particular teratogenic agents. 
 Although the role of environmental factors in oro-
facial clefting is well recognized, only a few GxE inter-
actions have thus far been identified in human studies 
(71). Differences in exposure assessment, limited sam-
ple size, and study heterogeneity are among the known 
challenges in studies of GxE interaction (66,72,73). A 
cleft study therefore needs to be sufficiently large and 
phenotypically well-characterized to provide the level 
of statistical power necessary to tease out the effects of 
GxE interaction (74). Although the difference in sta-
tistical power between the case-parent triad and case-
control designs is generally small for gene-association 
studies (75), the case-parent triad design has superior 
power for GxE interaction studies (72). 
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Box I.  Linkage vs. association analysis  
Linkage analysis 
Linkage analysis maps disease genes by looking for co-segregation of a marker allele with the disease among related subjects. 
If the marker allele and the disease-causing allele are located near each other on the same chromosome, they are highly likely 
to be transmitted together, because multiple crossovers between closely linked loci are very rare. The LOD score measures the 
strength of evidence in favor of linkage. It is the log to base 10 of the ratio of the likelihood of the marker and the disease gene 
being linked (recombination fraction θ < 0.5) compared with the likelihood of no linkage (i.e., θ = 0.5). The threshold for 
accepting linkage is a LOD score of +3 (a likelihood ratio of 1:1000) and that for exclusion is –2.  
Association analysis 
Association is a statistical term that describes the co-occurrence of two investigated factors significantly more often than what 
would be expected based on chance alone. A marker allele is said to be associated with a disease if its frequency is 
significantly higher (or lower) among affected individuals compared to predicted values from the general population. Two 
types of association studies are frequently used: population-based and family-based. The population-based approach relies on a 
standard case-control design where marker allele frequencies are compared between a set of unrelated affected individuals and 
a set of matched controls. By contrast, the family-based approach tests for the asymmetric distribution of a particular target 
allele among affected offspring and their biological parents. A positive association has several possible interpretations: (i) the 
marker allele itself is the disease-causing allele, (ii) the marker allele is in linkage disequilibrium (LD) with the disease-causing 
allele, (iii) the association is spurious due to population stratification (the population contains several genetically distinct 
subsets), or (iv) the association is merely a Type I error (a false positive).  
How does linkage differ from association? 
An association can have many causes, not all of which are genetic. Linkage by contrast is a specific genetic relationship 
between loci (not alleles or phenotypes). If linkage exists between a marker locus and a disease, co-segregation will be 
observed within a family irrespective of which allele at the marker locus is under scrutiny. Linkage looks at within-family 
differences between marker alleles and the disease, whereas allelic association studies exploit across-family associations. 
However, in populations that share a substantial number of common ancestors, linkage and association will tend to converge.  
 
 
Box II.  Linkage disequilibrium (LD)  
LD in association mapping 
LD occurs when a particular marker allele is so close to the disease allele that they are less likely to be separated by 
recombination. They are thus co-inherited over many generations. This represents a deviation from Mendel’s second law of 
independent assortment of genes. Under Hardy-Weinberg equilibrium, the frequency of a two-locus haplotype is the simple 
product of their individual frequencies. If, however, the population frequency of the haplotype is either in excess or in 
deficiency, the two loci are said to be in LD. LD will create an association if a significant proportion of the disease 
chromosomes derive from one not too distant common ancestor. Since the number of meiotic events observed in linkage 
studies is considerably less than that in LD studies, very dense maps of markers are usually needed for LD-based gene 
mapping. LD rarely extends more than one centimorgan (cM) from a susceptibility locus, unless the study is being conducted 
in population isolates in which genetic variability is often reduced. Even though allelic association may potentially outperform 
linkage in detecting weak susceptibility alleles, the decrease in power with genetic distance is much more dramatic in allelic 
association studies. When a specific genetic variant under study is not in the actual disease-causing gene, allelic association 
will nevertheless occur due to LD. This is more the rule than the exception in studies of complex diseases, where allelic 
heterogeneity will typically tend to limit the strength of an association.  
Factors affecting LD 
A large number of factors that are highly stochastic in nature interact to create substantial variation in the strength of LD across 
different populations and even across different segments of the human genome. These include founder population size, 
mutation rate, gene conversion, recombination, and natural selection. LD decays largely according to the recombination 
distance between markers and the number of generations that have elapsed since the susceptibility allele was first introduced 
into the population. This is mathematically represented by Dt = D0(1-θ)t, where D0 is the amount of LD at time 0, θ is the 
recombination fraction, and t is the number of generations that have elapsed. LD around rare alleles is thus expected to have 
longer range since such alleles are generally young and have undergone lesser reshuffling by recombination. Demographic 
factors such as inbreeding and population structure inflate LD. Inbreeding increases LD in a population by reducing the level 
of diversity. The same applies to recently admixed populations where a difference in allele frequency contributes to LD. Other 
factors that inflate LD include population bottlenecks (resulting in fewer founders, and hence lesser diversity) and natural 
selection where certain alleles that confer a selective advantage are swept to “fixation”.  
 
 
 A risk-conferring allele can interact with an envi-
ronmental exposure in the following manner [adapted 
from (53)]:   
• The variant allele increases risk only when carried 

by the fetus and, at the same time, the fetus is ex-
posed to the environmental agent (e.g. maternal 
smoking or alcohol intake during the 1st-trimester of 
pregnancy). Here, we expect to observe a positive 

interactive effect between the child’s genotype and 
the environmental exposure. 

• The variant allele increases risk only when carried 
by the mother and, at the same times, she is exposed 
to the environmental agent. In this case, we expect 
an interactive effect between the mother’s environ-
mental exposure and her genotype.  

• Mixed scenarios of the above. 
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Case-parent triads have previously been used to inves-
tigate GxE interaction in clefting (76-78), and different 
extensions of this method have been proposed (79-81). 
In a case-parent triad setting, GxE interaction is asses-
sed by comparing the transmission of a risk-allele or 
risk-haplotype to affected offspring in triads of exposed 
vs. unexposed mothers. A statistically significant diffe-
rence between the two transmissions would suggest a 
multiplicative interaction. To test whether the relative 
risk estimates are significantly different between the 
two strata of exposed and unexposed mothers at each 
locus, two approaches can be used, each with its own 
set of advantages/disadvantages. The first approach em-
ploys dummy variables for exposure categories in the 
design matrix of the log-linear model to create the app-
ropriate interaction terms. Interaction terms for haplo-
type frequencies can also be added, allowing for possi-
bly different haplotype frequencies over the different 
exposure categories. This approach is advantageous 
because it maximizes statistical power and seamlessly 
integrates the GxE interaction analysis with the already 
existing maximum likelihood model framework in 
Haplin. The drawback is that the design matrix of the 
log-linear model may become prohibitively large, in 
particular when dealing with multiple haplotypes and a 
large amount of missing data. 
 The second approach uses “post-estimation”. In this 
case, Haplin can be run on separate data files, one for 
each exposure category. The results from each expo-
sure category can then be tested against one another 
using either a Wald test or a score test. The Wald test 
has the advantage of being computationally simple; 
only the parameter estimates and their variance-
covariance matrix need to be stored. The score test is 
computationally more intensive because individual 
score contributions must be stored. However, the score 
test is readily extended to a correction for multiple-
testing within a region, for instance, for all SNPs 
within a gene. Generally, the post-estimation strategy 
is computationally less intensive and allows the exact 
hypothesis to be specified and tested after the time-
consuming part of the estimation has been performed, 
avoiding unnecessary re-runs of the full analysis. 
 
Haplin example  
To use post-estimation to test GxE interactions with 
Haplin, two steps must be followed. First, Haplin is 
used to estimate gene-effects in each stratum of the 
exposure covariate, using a command like this: 
 
res.strat <- haplinStrat(“C:/work/data.dat”, 
n.vars = 7, response =  "mult", markers = 1, 
covar = 7, use.missing = TRUE, 
design = "cc.triad", ccvar = 2) 
 
 Note that the exposure covariate (in the seventh 
column) is specified using covar = 7, and the result 
is saved in an R list called res.strat. Second, results 
from all strata are compared using the posttest: 
posttest(res.strat) 

 The result will be the chi-squared test statistic and 
the corresponding p-value of the GxE interaction be-
tween the first SNP (markers = 1) and a given envi-
ronmental covariate (e.g. smoking status). 
 
 
USING OFFSPRING-PARENT TRIADS TO 
ANALYZE GENOME-WIDE DATA 
 
Major advances in high-density SNP genotyping ar-
rays have heralded a new era of gene discovery for 
complex traits. Approximately 0.5-2.1 million SNPs 
can now be interrogated in a GWAS, providing an un-
precedented level of marker resolution for association 
mapping. Being an agnostic method, GWAS can 
potentially identify new disease-related genes and 
genetic pathways, providing a deeper insight into the 
pathogenesis of the disease compared to candidate-
gene based efforts (82,83). Despite the popularity of 
GWAS, however, its utility in the clinic has been 
debated (84-86). This is because the vast majority of 
the GWAS findings explain only minor fractions of the 
overall phenotypic variance attributable to additive 
genetic factors (85,87). Even when positive GWAS 
signals are identified, it is increasingly recognized that 
the complex structure of association signals makes it 
difficult to identify the one or more etiologic variants 
contributing to those signals. This arises both because 
the signals may be acting over many hundreds of Kb 
of DNA, creating a huge pool of candidate SNPs to 
evaluate, and also because the variants do not arise in 
more recognizable DNA sequences such as coding or 
promoter sequences, in which we understand causality. 
In addition, the contributions of rare variants, identifi-
able only by linkage and/or deep-sequencing approa-
ches, are also likely to be greater than expected, but 
there remain major challenges of strategy and cost to 
characterizing these variants. Other critical variables 
such as epigenetics and the environment have also not 
been easily incorporated into analysis. 
 In addition to the points noted above, the large num-
ber of tests and small odds ratios associated with risk 
alleles require very large sample sizes, often requiring 
collaboration between different research groups for a 
subsequent meta-analysis of the GWAS findings. This 
entails a strict adherence to harmonization protocols 
for the establishment of a reliable platform for sharing 
both genotype and phenotype information across parti-
cipating cohorts (88). The first GWAS on orofacial 
clefts, performed in individuals of Central European 
ancestry, identified a susceptibility locus on chromo-
some 8q24 (89). This locus was subsequently replica-
ted in three independent GWAS (42,90,91).  
 Haplin includes the function haplinSlide, which 
automates the analysis of a long sequence of single 
SNPs, or alternatively a sequence of overlapping sliding 
windows with haplotypes of length, for instance, equal 
to 4. Overlapping sliding windows will in principle in-
crease the chance of “bracketing” a point mutation by 
having a haplotype with SNPs on each side of the muta-
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Figure 4.  GxE interaction analysis. The quantile-quantile (QQ) plot shows the p-values for interaction between 
maternal first-trimester smoking and isolated cleft palate only (CPO) for 1315 SNPs in 334 autosomal cleft candidate 
genes. The QQ-plot compares p-values (-log10 scale) with an expected uniform distribution under the null (sloping 
line). The pointwise 95% confidence bounds for the p-values are indicated by the grey shadings around the expected p-
values. The stripped line in the QQ-plot indicates a p-value of 0.05. 

 
 
tion. However, estimating haplotypes entails a certain 
loss of power due to the higher number of alleles taken 
into account, and the unknown phase of the haplotypes. 
It is a priori not obvious whether a single SNP app-
roach or a sliding-window haplotype approach will have 
the best chance of detecting an association, so doing 
both might be worthwhile. 
 When analyzing SNPs in strong LD, and in particu-
lar when analyzing overlapping windows of length 4 
haplotypes (which will contain three of the same SNPs 
as the neighboring haplotype), there is a strong corre-
lation between results obtained from nearby SNPs or 
windows. Haplin has the possibility of computing a 
single summary p-value for a genetic region (such as a 
gene), based on all SNPs/windows within that region, 
corrected for the dependencies. 
 
Haplin example  
As described above, the main approach in Haplin to do 
a scan over a range of SNPs, either one at a time or in 
sliding windows, is through the function haplinSlide. 
The syntax for haplinSlide is almost identical to 

that of haplin itself, with the additional specification 
of window length (default is 1, meaning one SNP at a 
time). Output from haplinSlide is a list, each ele-
ment of which is the result from running haplin on 
one window (or single SNP). Since the output from 
haplin can be large (there is a lot of information 
stored in the background), haplinSlide has an 
option to produce a tabular output, which corresponds 
roughly to the screen output from haplin, organized 
in a table. 
 Moderately large data files with, say, a few thou-
sand SNPs, can be read directly into haplinSlide as 
an ordinary Haplin data file. However, this is slow in 
the currently distributed Haplin (version 3.5), and there 
is only limited functionality for handling very large 
data sets such as those from GWAS studies without 
breaking them up “manually”. However, the current 
beta version of Haplin includes this functionality, and 
it is due to appear in the next release. The new version 
is faster on moderately large files. In addition, it uti-
lizes the data structure of the GenABEL library for 
handling GWAS files (92). 
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 Having completed a scan by Haplin, p-values can 
be assessed using the function pQQ to produce a QQ-
plot. As an example, Figure 4 shows p-values for the 
interaction between maternal first-trimester smoking 
and isolated CPO for the 1315 SNPs in 334 autosomal 
cleft candidate genes in the Norwegian candidate-gene 
study. None of the SNPs show significant departures 
from the null hypothesis of no GxE interaction. 
 
 
CONCLUDING REMARKS 
 
Dissecting the causal architecture of common, complex 
diseases will depend critically on large-scale pooling 
of biomedical data from different biobanks. With its 
strong tradition of centralized health registries, Norway 
is in a prime position to explore the scientific and 
public health potential of biobanks through linkages to 
these diverse sources of biomedical information. A 
good example is the Norwegian Mother and Child 
Cohort Study (MoBa), which is the first of its kind to 
implement large-scale population screening of neuro-
developmental disorders early in life. It represents a 
unique resource for more in-depth analyses of gene-
environment interaction in a temporal context. How-
ever, to fully exploit the scientific potential of the 
MoBa biobank and other national biorepositories, 
advanced analytical tools will need to be developed to 
mine the vast amounts of data generated through 
GWAS, whole-genome/exome-sequencing, and 

genome-wide epigenetic studies.  
 In this review, we described a suite of methods 
based on the Haplin software to investigate different 
causal scenarios that are relevant to perinatal disorders 
and other complex traits originating in early life. As 
the intrauterine environment depends on the mother’s 
genetic make-up and her risk-taking behaviors, it is 
important to explore maternal and fetal gene-effects 
separately. The hybrid design is not only better-
powered than the case-parent triad design, it also 
allows the main effect of an exposure to be assessed 
efficiently. The methods presented here have broad 
utility, ranging from studies of causes of disease to 
studies of interactions between medical treatments and 
patient genotypes in clinical studies. The accom-
panying tutorial highlights various applications of the 
software to analyze the types of data already available 
in MoBa and other national biobanks.  
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