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ABSTRACT

We describe mammographic density and how it is associated with breast cancer risk, what mammographic
density represents biologically, as well as evidence that it is associated with breast cancer risk factors and
is modifiable. Mammographic density has a large unused potential in mammographic screening programs.
Currently mammographic density is being used as a biomarker or surrogate endpoint for breast cancer risk
in a number of studies, and we discuss the rationale for doing this, as well as the challenges involved. A
major challenge is the need for an automated method that can yield an even more precise estimate of the
dense areas in the breast. Currently the most widely used methods are various computer-assisted methods.
These are reader intensive, but so far the methods that yield the highest estimates for breast cancer risk.
Once a robust automated method for assessing mammographic density or breast density is developed, this
measure will probably become even more widely used, not just in epidemiology, but also in screening

programs and in clinical practice.

INTRODUCTION — DEFINITION OF
MAMMOGRAPHIC DENSITY

The relative amounts of fat, connective tissue, and epi-
thelial tissue determines the radiographic appearance
of the breast on a mammogram (Figure 1). Fat appears
as dark or radiological lucent areas, whereas connec-
tive and epithelial tissue appear as areas of high radio-
logic density. Mammographic density represents the
radiodense area. This is usually expressed as a percen-
tage, where percent mammographic density is the
percent of the breast area observed on a mammogram
that is radiodense or white. Sometimes investigators
will use the terms ‘breast density’ or ‘mammographic
breast density’ to indicate mammographic density.
However, the term ‘mammographic breast density’
seems to be redundant, and the term ‘breast density’ is
not completely accurate, since it implies that this is a
clinical, rather than a radiological measure. For this
review we will use mammographic density to indicate
what we can measure on a mammogram.

MAMMOGRAPHIC DENSITY, BREAST CANCER
RISK AND MAMMOGRAM SENSITIVITY

Percent mammographic density has been found to be
one of the strongest independent predictors of breast
cancer risk (1-5), with risk increasing with increasing
density. Women with the mammographically densest
breasts have a 4-6 fold increased risk of breast cancer
compared to women with the least dense breasts (5-
12). Most women have some mammographic density,
and the relative risk increases almost linearly with
increasing density. It is estimated that 10% of postme-
nopausal women and 20% of premenopausal women

Figure 1. Mammographic density is the area or areas on a
mammogram that are white (radiodense). This represents
epithelial and connective tissue.
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have mammographic density above 50% (5). This is
therefore a common risk factor, and it has been esti-
mated that about a third of all breast cancer cases can
be explained by high mammographic density. Further,
it has been argued that individual risk prediction
models with mammographic density alone is as strong
a predictor as the Gail model (13), which is sometimes
used to identify women at high risk of breast cancer.

The sensitivity of a mammogram, or the ability of
detecting an existing cancer is also reduced in women
with high mammographic density (14,15). Data from
various screening programs suggest that interval can-
cers are more prevalent in women with mammographi-
cally dense breasts (16,17). Despite this, mammograp-
hic density is in general not used to guide screening
intervals, or even as a criterion for additional exams in
large screening programs. Radiologists today use pre-
vious mammograms to compare with the current one
for changes that could indicate the onset of a cancer.
Although this improves detection rates for cancer,
screening programs could probably improve their
effectiveness even more by including mammographic
density as a criterion for selecting women who need
additional exams (17). Although additional exams
such as ultrasound or magnetic resonance imaging are
time consuming and costly, as they must be performed
by trained radiologists, it is clear that they can improve
detection rates of cancer substantially in women with
dense breasts. However, today, women are often not
told whether they have mammographically dense
breasts, or how sensitive the mammogram is likely to
be for them. To what extent this is acceptable from a
clinical or even ethical point of view can be discussed.
However, for epidemiologists there is a clear advan-
tage when few women know how dense their mammo-
grams are. This obliterates much concern about
selection bias in designing studies of mammographic
density as the outcome.

WHAT DOES MAMMOGRAPHIC DENSITY
REPRESENT BIOLOGICALLY?

Although mammographic density is a clear risk factor
for breast cancer, in order for it to represent a useful
biomarker for breast cancer risk it also needs to have
some biological correlates that can explain why this
measure is important. There have been a number of
studies correlating histopathological findings to mam-
mograms, but it is not yet completely clear what mam-
mographic density represents biologically. Nor is the
biologic basis of the relationship between increased
mammographic density and breast cancer risk com-
pletely understood. A number of early studies reported
that mammographically dense breasts contained epi-
thelial hyperplasia (18-21), but this was not consistent-
ly found (22-24). Further, there is no evidence that epi-
thelial proliferation is higher in dense than non-dense
areas (25,26). There is, however, some data that dense
areas have an increased number of epithelial cells (25).
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Further, it has become clear that stromal fibrosis is a
prominent feature in mammographically dense breasts
(2,22,24), and that dense breasts have higher level of
collagen, and altered expression of stromal proteins
(27,28). Although the role of collagen and stroma in
causing cancer of epithelial cells have not yet been
completely elucidated, stromal-epithelial interactions
are known to be important in breast carcinogenesis
(29). Thus, although, the exact mechanisms are not
clear, mammographic density is associated with cer-
tain markers of epithelial growth, and most definitely
with breast stroma. Finally, when we studied a set of in
situ tumors, the in situ breast cancers were more likely
to occur in the areas that were mammographically
dense (30). Thus although the details are not complete-
ly clear, mammographic density has a biologic basis
that explains its role in breast cancer development.

EPIDEMIOLOGICAL DETERMINANTS OF
MAMMOGRAPHIC DENSITY

In order for mammographic density to be useful as a
biomarker for breast cancer, we would also expect it to
be modifiable. Mammographic density appears to have
both a genetic component, but also a modifiable, non-
genetic component.

Genetic component

Mammographic density has a strong genetic compo-
nent. Studies of twins suggest that a large percent of
the variance is due to genetic factors (31-33). A num-
ber of epidemiologic studies have tried to identify the
important genes using a candidate gene approach. A
recent review (34) suggests that this approach has only
had limited success so far. So far, there is little evi-
dence that genes known to be strong determinants of
breast cancer risk predict mammographic density. Si-
milarly, common genetic variants identified in genome
wide association studies to play a modest role in breast
cancer risk have not been strongly associated with
mammographic density (35,36). However, there is
some indication that some of the genes involved in
hormone metabolism or that the insulin growth factor
genes (37) play a role. A number of studies are under
way to further explore the genetic basis of mammo-
graphic density, and more results on this topic should
emerge over the next few years.

The modifiable (non-genetic) component

Body mass index and reproductive factors

The environmental or non-genetic risk factors for
mammographic density have been much studied (1,2,
4,38,39). Mammographic density has some similarities
with serum estrogen levels in that it declines with age
and with menopausal status. However, while estrogen
postmenopausally is positively associated with body
mass (BMI), the association between percent mammo-
graphic density and BMI is inverse. The reason for this
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is obvious, women with large BMI tend to have large
breasts with substantial amount of fatty (non-dense)
tissue. Of other breast cancer risk factors, mammo-
graphic density is strongly inversely associated with
parity, this effect is almost linear. Large studies have
found that mammographic density, as breast cancer
risk, increases with age at first birth (38,39). There is
some indication that mammographic density is higher
in women with early menarche (38), but these data are
not completely consistent (39,40). It has been sug-
gested that the genetic component that determine
mammographic density may not be that different from
the genetic components that explain breast cancer risk
factors (41).

Postmenopausal hormone use

Mammographic density is clearly associated with use
of postmenopausal hormone therapy regimens with
combined estrogen and progestin therapy (42). Nu-
merous studies have reported mammographic density
changes in women who start combined estrogen and
progestin therapy (EPT), most have been from the US
(43-48). Two placebo-controlled randomized trials
from the US, the Postmenopausal Estrogen and
Progestin Interventions (PEPI) trial (46,48), and the
Women’s Health Initiative (WHI) trial (49) found that
women assigned to the EPT arm had on average a 5%
and 6% increase in mammographic density respective-
ly after 1 year, while there were only minor changes in
the placebo group or the estrogen alone arm. In both
studies women used conjugated equine estrogens com-
bined with medroxyprogesterone acetate, and in PEPI
there was also one arm combining these estrogens with
micronized progesterone. There is a large individual
variation in how these treatments affect mammo-
graphic density. Part of this variation is explained by
changes in estrogen levels (50,51), suggesting that
how women absorb or metabolize estrogen may deter-
mine this variation.

There are limited data on mammographic density
changes associated with the EPT regimens commonly
used in Scandinavia, which contain estradiol (E2) and
norethisterone acetate (NETA) compounds. Two Swe-
dish (52,53) and two Greek studies (54,55) correlated
data on mammographic density changes with such
hormone use. These studies used Wolfe parenchymal
patterns categories to classify mammograms, and
found that higher risk patterns were substantially more
common in women starting EPT. Two Norwegian stu-
dies reported similarly higher mammographic density
among women using the E2/NETA regimens using
Madena (56,57). There was no indication that the
E2/NETA regimens are better for the breasts than the
US regimens, or that the mammographic density chan-
ges observed with E2/NETA regimens are smaller than
those observed with US regimens.

Other medications — tibolone, tamoxifen and raloxifene
Although the effects of tibolone on the breast are not
completely clear, evidence so far suggest that it does
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not increase mammographic density (58,59). Tamoxi-
fen treatment reduces mammographic density, at least
in premenopausal women (60,61), and treatment with
a hormone regimen that reduces serum levels of estro-
gen and progesterone also reduces mammographic
density (62,63). Raloxifene, which is used to prevent
osteoporosis, but which has also been found to prevent
breast cancer (64,65), does not have much effect on
mammographic density (66,67).

Thus the evidence so far suggests that mammogra-
phic density is associated with a number of environ-
mental factors, in particular certain hormone therapies,
as well as reproductive factors believed to act through
hormonal mechanisms. How large a percentage of the
variance in mammographic density is explained by
non-genetic factors is not completely clear. Some will
argue that it is less than 30%, others that it may be
close to 50%, the discrepancy is due to what extent
one believes the variance in mammographic density
between monozygotic twins is solely due to shared ge-
netics or could partially be due to shared environment
(31-33).

THE CASE FOR USING MAMMOGRAPHIC
DENSITY AS A SURROGATE MARKER FOR
BREAST CANCER RISK

The associations with hormonal factors suggest that
mammographic density is modifiable. This, combined
with mammographic density being so closely associa-
ted with breast cancer risk, is why it has been sugges-
ted that mammographic density be used as an interme-
diate endpoint in breast cancer intervention studies. An
advantage of using mammographic density rather than
cancer is that mammographic density is a quantitative
trait that all women have, while very few women deve-
lop breast cancer. Some investigators have, however,
argued that until it is demonstrated that a mammogra-
phic density increase results in cancer occurrence, the
use of this marker is not interesting. However, this
question is currently being addressed in a study within
the Women’s Health Initiative trial, and should
become available over the next year. Data from studies
of mammographic density changes over time, do
however, suggest that density increases are in fact
predictive of risk (68).

WHAT MAGNITUDE OF MAMMOGRAPHIC
DENSITY CHANGE IS IMPORTANT?

If an intervention or risk factor changes mammogra-
phic density with on average 5%, is this important? It
could be. Estimates of density changes are averages,
which means that a subset of the women may expe-
rience substantially larger changes. For estrogen and
progestin therapy, the average change is 5-6%, but a
subset of women have much higher changes, 20-25%
have increases of 10% or more, and some women have
a substantially larger increase (50). Similar magnitude
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changes are seen with tamoxifen. The important clini-
cal question is whether the women with the largest
changes in density with an intervention are the women
with the largest changes in breast cancer risk.

HOW TO MEASURE MAMMOGRAPHIC
DENSITY

Qualitative methods

There are numerous methods of measuring mammo-
graphic density. Early studies used predominantly
parenchymal patterns. The most commonly used such
classification was developed by John Wolfe (69,70), a
well known mammogram expert in the US. Wolfe de-
scribed four parenchymal patterns (N1, P1, P2, DY) of
increasing densities. In the N1 pattern, the breast con-
sists almost entirely of fat, the P1 and P2 patterns
represent increasing ductal prominence, and in the DY
pattern the breast parenchyma consists of diffuse or
extensive nodular densities. In his two original studies,
Wolfe reported that the risk of incident breast cancer
was substantially higher in women with the DY pattern
than in women with the N1 pattern (69,70). Although
later studies confirmed a higher risk of breast cancer in
women with the DY/P2 high-risk patterns (1), results
were not as impressive as in Wolfe’s first study. Other
classification methods have some similarities with
Wolfe patterns. The qualitative Breast Imaging Repor-
ting and Data System (BI-RADS) method for density
assessment developed by the American College of
Radiology is one commonly used approach (71). Note
that this BI-RADS density method is not the same as
the clinical assessment categories that were created to
indicate whether a mammogram represents a negative,
benign or suspected malignant finding. Rather the BI-
RADS mammographic density categories are four, ori-
ginally qualitative, categories of density (almost enti-
rely fat, scattered fibroglandular densities, heterogene-
ously dense and extremely dense) (71). Another set of
patterns are those developed by a Swedish mammo-
grapher, Lazlo Tabar (72). These qualitative methods
have been associated with breast cancer risk and breast
cancer risk factors, but the magnitude of these associa-
tions are not as strong as those obtained with more
quantitative approaches (5,8,73). It has further been
suggested that qualitative patterns are not predictive of
breast cancer risk after percent density has been taken
into account (8,74).

Quantitative methods

There are a number of quantitative approaches. The
simplest is the subjective evaluation approach, where
radiologists categorize the mammograms into one of a
number of preset categories, such as <25% density,
25-49% density etc. One such method is the six cate-
gory subjective assessment method used by Boyd (75).
Another method is the quantitative BI-RADS method:
the qualitative BI-RADS categories described above
have recently been linked to a quantitative description
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(<25%, 25-50%,51-75% and >75% density). This
means that a vast number of mammograms read in the
US are read with these categories (71). The Norwegian
Breast Cancer Screening Program uses three categories
of density, <30% glandular tissue, 30-70% glandular
tissue and >70% glandular tissue (16). The choice of
this few categories was unfortunate, and future scree-
ning programs would be better off using the BI-RADS
4-category approach, as this would at least enable
comparisons with the vast amount of data collected in
the US.

Computer-assisted methods have now become the
most widespread method for assessing mammographic
density in epidemiological studies. The method entails
that the reader uses digitized versions of the analog
image, and then using a specially developed software
package, where the reader can outline the total area of
the breast, as well as the area he/she considers to
represent mammographic density. The dense area is
identified using a threshold method, where the reader
sets the threshold of ‘whiteness’ for what represents
mammographic density after first excluding light
artifacts. There are currently several such methods,
including the Toronto method (Cumulus) (76,77), ours
(Madena) (63), as well as others (11). The Madena
method is displayed in Figure 2. Different amount of
mammographic density is displayed in Figure 3. These
computerized threshold methods have been well vali-
dated in the sense that they all have resulted in strong
estimates of relative risk of breast cancer.

Digital mammograms

Digital images appear less dense, thus comparisons be-
tween analog and digital mammograms from the same
woman over time can be problematic. Further, the
methods described above for assessing mammographic
density were developed for use of analog mammo-
grams that are subsequently scanned into a computer.
Few studies have examined to what extent these
methods yield the same risk estimates when applied to
digital mammograms. However, several of the automa-
ted methods and volumetric methods described below
can use digital images, although as explained below,
they have not yet become fully established, nor have
they yielded as strong associations as the current
methods.

Automated methods

A number of automated or semi-automated methods
have been proposed to identify mammographic density
using either a threshold based method, such as those
described above, or fractal analysis or other texture-
based techniques (78-86). However, so far none of
these methods have become widely used.

Volumetric methods

Mammographic density as measured with the methods
described above has been much used in epidemiologic
studies. However, percent mammographic density is a
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Figure 2. Example of a computerized mammographic den-
sity assessment program (Madena)
(http://radonc.usc.edu/uscradonc/madena/madena.html or
http://www.eyephysics.com/Madena/TOC.html).

Top) On the digitized mammogram that has been imported
into Madena, the reader outlines the total breast area by
drawing a blue line around the breast. The size of this area is
calculated by the software (here: 147.20 cm?).

Middle) The reader draws a region of interest in red around
the areas in the breast considered to contain mammographic
density.

Bottom) The reader decides on a threshold for what
represents mammographically dense areas within the region
of interest. Such dense areas are colored yellow. The size of
the yellow area within the re%ion of interest is estimated by
the computer (here 58.68 cm®). Percent density can later then
be calculated (100% x 58.68cm*/147.20cm? = 39.9%).

simplified, two dimensional measure of a three dimen-
sional structure, and introduces substantial measure-
ment error of the actual biologic measure of interest,
epithelial tissue (or epithelial-stromal tissue) in the
breast. Volumetric measures of the dense tissue in the
breast ought therefore to yield even higher estimates of
breast cancer risk than mammographic density. Cur-
rently a number of research groups are working on
developing automated volumetric methods to yield an
estimate of breast density (either based on mammo-
grams or other radiologic techniques). These include
methods based on ultrasound tomography (87) and
magnetic resonance imaging (88). In addition some in-
vestigators have developed methods that use digitized
film mammograms (89-92). However, so far these
automated methods have yielded weaker associations
with breast cancer risk and with risk factors than the
standard two dimensional mammographic density
methods (93-95).

CHALLENGES WITH USING MAMMOGRAPHIC
DENSITY AS A SURROGATE MARKER FOR
BREAST CANCER RISK IN EPIDEMIOLOGIC
STUDIES

Although it has yet to be proven that a change in den-
sity is associated with a change in breast cancer risk,
mammographic density has already been used in a
number of studies as a surrogate marker for breast
cancer risk. In the following we discuss some of the
challenges associated with such use.

Not all interventions work — the example of physical
activity

What we do know so far is that mammographic densi-
ty does respond to hormone manipulations. However,
this does not mean that it is useful for studies of every
possible intervention for breast cancer. One example is
physical activity. The association between physical
activity and mammographic density is not straightfor-
ward. Although physical activity is a protective factor
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Figure 3. Four examples of mammographic density:

for breast cancer, there is little evidence from epide-
miological studies so far is that it is associated with
reduced mammographic density (96-99). To the con-
trary, women with high levels of activity tend to have
high percent mammographic density. The association
with absolute area of the mammogram that is dense
(absolute density) is also not that clear (99). Perhaps
this suggests that it is difficult to distinguish the effects
of physical activity completely from that of body mass
(see above). What is clear is that mammographic den-
sity is not a useful marker for the beneficial effects of
physical activity on the breast.

Current computer-assisted methods —
reader intensive and time consuming

One main challenge with the current computer-assisted
methods is that they require digitized mammograms,
and this is time consuming and expensive. The other
challenge is that the methods are not objective, but rat-
her completely dependent on a subjective assessment
by the reader. The measurements are also time consu-
ming to obtain, each digitized image needs to be pulled
up on the screen and read. An experienced reader can
read anywhere between 30-100 mammograms per
hour, fewer if this is part of a clinical trial and the
images need to be compared.

Subjective measure, depends on reader

Another challenge with these current computer assis-
ted methods is that they are indeed subjective, i.e.
reader dependent. Although reading densities is not
that difficult to learn, negative findings in particular
from small studies should be interpreted with caution.
It ought to be a requirement that negative studies
should provide evidence that the reader’s readings are
valid. Usually readers will describe high correlation
coefficients or high intra-class correlation coefficients.
However, high correlations is expected on a variable
with values from 0-100, where we use essentially the

0%, 23%, 55% and >75% mammographic density.

whole scale. Further, showing that a measure is repro-
ducible does not necessarily indicate that it is valid.
What investigators ought to do instead (or in addition
to these measures) is to provide results on how their
mammographic density estimates vary with age, or
parity, or menopausal status or even BMI. If they
cannot find associations with these variables in the
expected direction, then there is little reason to believe
that the measurements of mammographic density used
in the paper are valid. Similar requirements ought to be
placed on studies using new automated methods, both
data on reliability and validity should be presented.

Measurement error — technical challenges, changes
in projection of mammograms

It is difficult to assess changes in mammographic den-
sity if the films at two different time points have wide-
ly different exposures or, and this is more common, if
the projection of the breast has changed. Sometimes
one image will tend to display much more of the pro-
ximal area of the breast than the image obtained at the
other time point, making any comparison impossible.
If one image is analog and the others digital, the reader
will guess that the analog image is older than the
digital images, introducing possible systematic bias. At
some large facilities, in particular in the United States,
equipment, films and even technicians may change
often. This is an additional challenge. However, all of
these issues can be overcome in studies of mammogra-
phic density with adequate planning, size and making
certain the mammograms are read in a random order,
and that the reader is blinded to the treatment arm and
timing of the images.

Automated volumetric methods of breast density —
what to expect

Once a robust automatic volumetric method is deve-
loped, we should expect it to yield even stronger esti-
mates of breast cancer risk than the current methods
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using mammographic density. However, any new such
method needs to be able to show that it can find risk
associations with breast cancer that are at least as
strong as those with the conventional mammograms
and computer-assisted methods. Thus, unless such
methods can find at least relative risk increases of 4-6,
they are not particularly useful. And, because we
would expect volumetric methods to reduce the
measurement error we are introducing by using a two-
dimensional image when we use mammograms, we
should expect solid volumetric methods to yield rela-
tive risk increases that are substantially larger than 6.
Thus showing that a new volumetric method is highly
reproducible, or correlated with, or as good as current
computer-assisted methods of assessing percent mam-
mographic density is not sufficient, the volumetric
methods ought to be even better.

CONCLUSIONS AND FUTURE PERSPECTIVES

In conclusion, mammographic density is a strong
breast cancer risk factor, one of the strongest risk fac-
tors known, apart from age and certain genetic muta-
tions. It has been associated with other breast cancer
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risk factors, in particular those believed to act through
hormonal mechanisms. Another advantage with this
marker that can be measured on a continuous scale is
that all women have measurable density, and most wo-
men have at least some density. Mammographic densi-
ty may be a useful surrogate endpoint for breast cancer
risk in clinical trials of agents that work through
hormonal mechanisms. But, not all interventions may
work on mammographic density, even if they ultimate-
ly turn out to reduce breast cancer risk. Therefore, stu-
dies selecting to use this measure must keep in mind
how their intervention is likely to work. Probably the
greatest challenge to mammographic density is that it
is a two dimensional method, and there are still no au-
tomatic methods that have been found to work as well
or better than the computer-assisted methods. Thus
once a robust automatic volumetric method for mam-
mographic density has been developed, and estimates
are immediately provided to clinicians, then mammo-
graphic density may become much more widely used
both in mammographic screening programs as well as
in clinical practice. Until then, this is mostly a measure
for epidemiologists.
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