Analyzing low emissions policy scenarios in an European context:

A contribution to the LinkS project

Christian Skar¹, Gerard Doorman¹ and Asgeir Tomasgard²

NTNU - Trondheim Norwegian University of Science and Technology

Department of Electric Power Engineering¹ Department of Industrial Economics and Technology Management²

Annual Conference, November 29-30, 2012

Outline

- 🚺 Part I Asgeir
 - Introduction to the LinkS project
 - The global climate assessment model (GCAM)
 - Motivation for regional study
 - Power system investment model
- Part II Christian
 - Analysis of the 650 ppm scenario
 - Analysis of the 450 ppm scenario
 - Conclusion and remarks about the policy study
 - Future work

- Working (mainly) with long term sustainable energy system development
- Multi-disciplinary (and integrated) research group
 - Integrated assessment modeling
 - Power market modeling
 - Gas market modeling
 - Regional energy system modeling
 - Scenario analysis
 - Policy analysis
- Global and regional perspective

The LinkS project

- Working (mainly) with long term sustainable energy system development
- Multi-disciplinary (and integrated) research group
 - Integrated assessment modeling
 - Power market modeling
 - Gas market modeling
 - Regional energy system modeling
 - Scenario analysis
 - Policy analysis
- Global and regional perspective

Joint Global Change Research Institute (JGCRI)

- Working (mainly) with long term sustainable energy system development
- Multi-disciplinary (and integrated) research group
 - Integrated assessment modeling
 - Power market modeling
 - Gas market modeling
 - Regional energy system modeling
 - Scenario analysis
 - Policy analysis
- Global and regional perspective

- Working (mainly) with long term sustainable energy system development
- Multi-disciplinary (and integrated) research group
 - Integrated assessment modeling
 - Power market modeling
 - Gas market modeling
 - Regional energy system modeling
 - Scenario analysis
 - Policy analysis
- Global and regional perspective

- Working (mainly) with long term sustainable energy system development
- Multi-disciplinary (and integrated) research group
 - Integrated assessment modeling
 - Power market modeling
 - Gas market modeling
 - Regional energy system modeling
 - Scenario analysis
 - Policy analysis
- Global and regional perspective

- Working (mainly) with long term sustainable energy system development
- Multi-disciplinary (and integrated) research group
 - Integrated assessment modeling
 - Power market modeling
 - Gas market modeling
 - Regional energy system modeling
 - Scenario analysis
 - Policy analysis
- Global and regional perspective

Understanding regional impacts of climate targets

- Analyze optimal development of the European power system given global GHG emission mitigating strategies.
- Linking of a global top-down energy/climate model and a regional power system model.

Interaction between research tasks

Global Climate Assessment Model (GCAM) – I

An integrated assessment model developed at The Joint Global Change Research Institute in Maryland.

- Dynamic recursive partial equilibrium model.
- Comprises an economic module, an energy system module, an agricultural and land use module and a climate effects module.
- Essentially models interlinked regional markets and finds an equilibrium solution by adjusting prices.
- World is modeled as 14 regions and annual demand and supply of energy available in 5 year time steps. Horizon is until 2100.

Global Climate Assessment Model (GCAM) - II

Global Climate Assessment Model (GCAM) - III

Global Climate Assessment Model (GCAM) - III

Global Climate Assessment Model (GCAM) - III

Why more detail? (I)

Figure: Share of total demand for electricity European countries (WE+EE) 2010 (Source: ENTSO-E)

Why more detail? (II)

Figure : ECMFW wind field data for Europe (source: European Environment Agency)

Norwegian University of Science and Technology

Why more detail? (III)

Figure : Average solar irradiation in Continental Europe (source: solargis)

Interaction between models

Global IAM

break down

Demand, fuel prices, CO₂ prices

Power system model

We were picturing the following interaction between our models

Power system investment model – Modeling assumptions

- Investments are continuous
- Lines are independent (i.e. no Kirchoff's laws)
- Independent operational scenarios (e.g. no ramping, simplified storage)

Structure of investment model

The investment model is a fairly standard two-stage stochastic model where

- Investments in generation capacity and transmission capacity are done in the first stage
- Uncertainty in availability of intermittent resources and in load are then revealed
- Second stage decisions, which are production levels, network flows and unserved energy, are then made given the investments.

Formulation of the investment model

The basic formulation of the two-stage stochastic model is:

- Minimize investment cost and expected operation costs
- Subject to:
 - Investment bounds (don't let the model go wild)
 - Max/min capacity requirements on generation within GCAM regions
 - Load constraints
 - ► Flow constraints (basically just upper/lower bounds on lines)
 - Production constraints

NTNU - Trondheim Norwegian University of Science and Technology

Scenario structure

Outline

- Part I Asgeir
 - Introduction to the LinkS project
 - The global climate assessment model (GCAM)
 - Motivation for regional study
 - Power system investment model
- Part II Christian
 - Analysis of the 650 ppm scenario
 - Analysis of the 450 ppm scenario
 - Conclusion and remarks about the policy study
 - Future work

650ppm stabilization scenario

Global emissions and CO₂ concentration 650 ppm

European electricity mix reference vs 650ppm

Fuel prices 650 ppm

Regional European electricity mix 650ppm

Cum. investments generation 2030, 650 ppm

GW

Total capacity 2030, 650 ppm

GW

Cum. investments generation 2050, 650 ppm

GW 🔼

Total capacity 2050, 650 ppm

GW

Investment options

Cum. investments transmission 2030, 650 ppm

Cum. investments transmission 2050, 650 ppm

450ppm stabilization scenario

Global emissions and CO₂ concentration 450 ppm

European electricity mix reference vs 450ppm

Fuel prices 450 ppm

Regional European electricity mix 450ppm

Cum. investments generation 2030, 450 ppm

GW [

Total capacity 2030, 450 ppm

GW

Cum. investments generation 2050, 450 ppm

GW

Total capacity 2050, 450 ppm

GW 🔼

Investment options

Cum. investments transmission 2030, 450 ppm

Cum. investments transmission 2050, 450 ppm

Conclusion

- This approach provides additional information about effects of a climate policy on a regional power system
- The results can now be used to adjust GCAM scenarios
- Can be useful for policymakers on a national level
- The results indicate that an optimal expansion involves high investments in transmission to support balancing of supply and demand.

Further comments on operational modeling – Hydro power

- Including enough time steps to cover a full planning cycle for a big reservoir quickly makes the operational problem prohibitively large.
- One possible way to circumvent this is to construct scenarios for water values, that is, the alternative cost of the water in a reservoir.
- Water values can be used to represent different seasons in a year, but also different hydrological situations (dry year, wet year, normal year, etc)
- The plan is to use a specialized hydro power production model for making the water value scenarios.

Possible future extensions of the model

- A network flow model
- Integer values in the investment stage
- Relaxing the constraint that the energy mix computed by capacity expansion model should match GCAM. The GCAM results can be used to generate scenarios for climate policy uncertainty.
- Develop a multi-stage model with strategic uncertainty.

Thank you for your attention

