TKJ4215 Statistisk termodynamikk i kjemi og biologi Eksamen 31.05.2013, 09.00-13.00

Norges Teknisk-Naturvitenskapelige Universitet

Hjelpemiddelkode A. (Alle trykte og håndskrevne hjelpemidler tillatt. Alle kalkulatorer tillatt.)

Kontaktperson under eksamen: Prof. Per-Olof Åstrand, Institutt for Kjemi,

mobil: 9346 3033

NB: Oppgavene teller ikke like mye. Totalt er 100 poeng fordelt på fire oppgaver. Se parentes etter oppgavenummer for antall poeng per deloppgave.

Exercise 1 (15, 10)

- a) For calculating the Helmholtz free energy, F, we use either F = U TS or $F = -k_BT \ln Q$. Which are the properties and constants entering the two equations? Briefly explain how to calculate F for four model systems: i) the free energy of a single molecule; ii) a lattice model for a set of N interacting molecules described with an interaction energy, w_{AB} , iii) a system with m energy levels, each level with an energy ε_j , iv) an ideal gas.
- b) Given that you know F in terms of $F = -k_B T \ln Q$, explain how you would calculate the pressure, p, and the chemical potential, μ . What would be the approach to calculate U in the canonical ensemble?

Exercise 2 (10, 5, 5)

- a) In a chemical reaction, what is the transition state and the activation energy? What is the fundamental concept in catalysis? In heterogeneous catalysis, explain Sabatier's principle and what a volcano curve is, respectively.
- b) As an example, we take the reaction for dissociation of methane,

$$\mathrm{CH_4} \to \mathrm{CH_3} + \mathrm{H}$$

and the same reaction for deuterated methane,

$$CD_4 \rightarrow CD_3 + D$$

Which reaction is faster? Motivate the answer.

c) Your fellow organic chemist would like to chlorinate butane, CH₃-CH₂-CH₂-CH₃, but he/she is uncertain about if the result will be 1-chlorobutane, CH₂Cl-CH₂-CH₃, and/or 2-chlorobutane, CH₃-CHCl-CH₂-CH₃. Based on the discussion in b), advise on a strategy to find out what the product is.

Exercise 3 (20, 20)

a) Self-assembly is used in nanoscience to construct devices on a molecular scale. Here we use a surface as a carrier material, and we have two types of molecules A and B that we expect to assemble on the surface according to the pattern in the figure, i.e. with only A-B interactions.

						A	
						В	
						A	
В	Α	В	Α	В	Α	В	A
Α	В	A	В	Α	В	A	В
				9			

We have $N_A = N_B$ molecules which can be assumed to be a large number. The temperature is 300 K. Calculate the free energy difference, ΔF , between the pattern in the figure and a random distribution of the molecules on the surface in terms of the interaction energies. We use w_{AA} , w_{BB} and w_{AB} for the intermolecular interactions and w_{As} and w_{Bs} for the molecule-surface interactions. Is it important in this task to assume that we have a large number of molecules? Motivate the answer.

b) The Boltzmann distribution may be written as

$$p_j = rac{g_j e^{-eta E_j}}{Q}$$

where g_j is the degeneracy (multiplicity) of energy level j. Show by using this equation as a starting point that the ratio between the probabilities to be at two energy levels can be given in terms of ΔF as

$$\frac{p_j}{p_i} = e^{-\beta \Delta F}$$

What is the condition in terms of the interaction energies to get a ratio larger than 1000/1 between the correct assembly (in the figure) and a random configuration? Does the result depend on the number of molecules? Motivate the answer. Here we can assume that $w_{AA} = w_{BB}$. This condition may be difficult to achieve for some systems, so can you suggest some approaches to improve the preference for the correct assembly?

Exercise 4 (15)

a) What is the most important difference between a lattice model for a regular solution of molecules (with about equal size) and a lattice model for a polymer solution? Why do we use volume fractions instead of mole fractions for polymer solutions? Let us next regard a solution between a polymer A and a molecule B, where the volume fraction of the molecule B is 99%. How will the vapour pressure of the molecules B be affected by i) the length of the polymer A, and ii) the interaction energies w_{AA} , w_{BB} and w_{AB} , respectively? Explain why and discuss the relative importance of the contributions at the given volume fraction. Finally, what would you regard as an ideal polymer solution in comparison to a regular polymer solution?