

Department of Chemistry

Examination paper for KJ3021 – NMR

Academic contact during examination: Lise Kvittingen, mob. 48299706

Examination date: 21.12.2018

Examination time (from-to):

Permitted examination support material:

C: - approved calculator - ruler

Other information:

Language: English Number of pages: Number of pages enclosed:

> **Checked by:** Prof. Finn Aachmann

28/11-18

Date

Signature

Notes:

- In some of multiple choice questions more than one answer can be correct.
- *Circle letter(s)* before the correct answer(s)

Problem 1.

What is correct:

- a) Correlation signals in a NOESY spectrum are always positive
- b) NOE effect is suppressed by quadrupolar relaxation mechanism
- c) In presence of paramagnetic molecules, NOE is enhanced
- d) For medium size molecules (1-3 kDa) NOESY experiment is unreliable
- e) Increase of B_0 field has no effect on NOE.

Problem 2.

(6 pts)

Match the experiments in the first column with the correct properties given in the first raw. See the example of ¹³C BB experiment.

Spectrum property \rightarrow	Observed nucleus is		Signal enhancement by polarization	NOE signal enhancement	Always zero-order		
Experiment ↓	¹ H	¹³ C	transfer		spectrum		
¹ H							
¹³ C BB		X		Х	Х		
HSQC							
C,H-COSY/ HETCORR							
Reverse INEPT							
Gated decoupling 1D ¹³ C							
Inverse- gated decoupling							

(12 pts)

Problem 3.

Draw a scheme for the basic spin-echo pulse sequence and its effect on an AX spin system by using the vector model.

(10 pts)

Problem 4.

What happens with individual nuclear spins immediately after $90^{0}_{x'}$ pulse?

	11	1 2	- 1
	a) They have phase coherence.b) They are aligned along y-axis.c) They start to precess with higherd) They interchange the energy lev	r frequency. els.	(4 pts)
Proble	e <u>m 5.</u>		
Wh a) b) c) d) e) f) g) h)	hich of the following procedures is/ar use of a window function tuning and matching phase correction removal of magnetic field inhomoge pulse calibration FID acquisition spectrum calibration shimming	re considered as spectrun eneities	1 processing?
<u>Proble</u>	em 6. Suggest 2 methods for distinguishin	g enantiomers in NMR.	(9 pts)
1)			

2)_____

(8 pts)

Problem 7.

1D and 2D NMR spectra of an unknown compound are shown on pages 4-7. Its molar mass is 249.12 gmol⁻¹. Elucidate the structure and assign all ¹H and ¹³C shifts.

(25 pts)

¹H spectrum

HMBC expansion

Problem 8.

A set of 1D and 2D NMR spectra shown on pages 8-21 belongs to one of structures A-D (page 8).

- a) To which of them?
- b) Assign all ¹H and a ¹³C resonances of that compound. Write the shifts next to the according proton/carbon in the right structure.

(26 pts)

HMBC

¹H spectrum

¹H spectrum – expansion

¹H spectrum – expansions

¹³C spectrum and expansions

DEPT-135 and expansions

HSQC

COSY

(wdd) g

(wdd) g

HMBC expansion

Proton shifts for common organic compounds

1тт	1тт	0	1.		C		•		1
¹ H	чH	(:0111	nling	constants	tor	common	organic	compoi	inds
	T T	COup	Jung	combiantio	101	common	orguine	compou	AIIGO

Туре	J (Hz)	Туре	J (Hz)
>⊂ ^H _H	12-15	H H 	2-9
$\begin{array}{c c} H & H \\ - C - (C)n - C - C \\ - C & - C \\ - C $	0	C H3 CH2-x	6.5- 7.5
CH3 CH-X CH3	5.5- 7.0	H-C-C-H X Y	 aa 5-8 ae 2-4 ee 2-4
C=C_H	0.5- 3	H C=C H	7-12
H_C=C_H	13-18	C=C_H	4-10
H_C=C_C-H	0.5- 2.5	HC=CC-H	0
C=C-C=C	9- 13	–C–C≡C−H H	2- 3
H H H	1- 3	C=C_H CO-H	2- 4
	 o 6- 9 m 1- 3 p 0- 1 	3 2 1	 1-2 1.6-2.0 1-3 0.6-1.0 1-4 1.3-1.8 2-3 3.2-3.8
$ \begin{array}{c} 3 \\ 4 \\ N \\ H \\ H \end{array} $	 1-2 2.0-2.6 1-3 1.5-2.2 1-4 1.8-2.3 2-3 2.8-4.0 	$4 \sqrt{\frac{2}{1}}$	 1-2 4.6-5.8 1-3 1.0-1.8 1-4 2.1-3.3 2-3 3.0-4.2
4 2 5 N 1	 1-2 4.9-5.7 1-3 1.6-2.6 1-4 0.7-1.1 1-5 0.2-0.5 2-3 7.2-8.5 2-4 1.4-1.9 	A H H H H b H C	a) 4.5 (gem) b) 6-10 (cis) c) 3-6 (trans)

¹H shifts

relativ to TMS	12	11	10	9	8	7	6	5	4	3	2	1	0	-1
H ₃ C-Alkyl														
H ₃ C-C-Hal														
H ₃ C-C=C														
H ₃ C-CC														
H ₃ C-Aryl,-Heteroaryl														
H ₃ C-CO														
H₃C-S-														
H ₃ C-SO ₂ -														
H₃C-N														
H ₃ C-O-Alkyl														
H ₃ C-O-Aryl, -O-CO-														
C-CH ₂ -Alkyl														
Cyclopropane														
C-CH ₂ -CO														
C-CH2-O-														
C-CH ₂ -S														
C-CH ₂ -NO ₂														
C-CH ₂ -N														
C=C-CH ₂ -C=C														
N-CH ₂ -CO-														
-O-CH ₂ -CO-														
-O-CH ₂ -O-, -Aryl														

	12	11	10	9	8	7	6	5	4	3	2	1	0	-1
CH-Alkyl														
CH-Hal														
С-СН-О-														
C-CH-N														
CO-CH-C=C														
CH-Aryl,-NR-,-O-														
-CCH Alkine														
CH=C-														
Ar-H														
Alkyl-, Aryl-CHO														
Alkyl-OH														
Aryl-OH														
R-COOH														
Alkyl-SH														
Aryl-SH														
Alkyl-NH2, Alkyl2-NH														
Aryl-NH2, Aryl2-NH														
R-CO-NH-														
-CO-NH-CO														
	12	11	10	9	8	7	6	5	4	3	2	1	0	-1

¹³C Chemical Shifts

relative to TMS	220	200	180	160	140	120	100	80	60	40	20	0	-20
H ₃ C-C- primary													
H₃C-S-													
H₃C-N													
H ₃ C-O-													
-H ₂ C-C secondary													
Cyclopropanes													
-H ₂ C-S-													
-H ₂ C-N													
-H ₂ C-O-													
-H ₂ C-Hal								F	CI	Br	I		
>CH-C- tertiary													
>CH-S-													
>CH-N													
>CH-Hal							F	CI	Br	I			
C-C quarternary													
C-S-													
C-N													
C-O-													
C-Hal								CI	Br	I			

relative to TMS	220	200	180	160	140	120	100	80	60	40	20	0	-20
Alkines													
C=C=C Allenes													
C=C Alkenes													
Aromatic Compounds													
Heteroaromatic Compounds													
-S-CN Rhodanides													
-N=C=S Isothiocyanates													
-O-CN													
-N=C=O													
-CN													
-NC													
>C=N- Azomethines													
(-CO)2O Anhydrides													
-COOR													
-CONHR													
-(CO)2NR Imides													
-COOH													
-COCI													
-CHO													
>C=0													
relative to TMS	220	200	180	160	140	120	100	80	60	40	20	0	-20