NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CHEMISTRY

ENGLISH

EXAM IN GENERAL CHEMISTRY, KJ1000

Monday May 21th, 2012, 09:00 – 14:00

The exam consists of: Problems (2 pages in addition to this one) and attachments (4 pages)

Included in the attachments are a periodic table, a list of some equations, tables of thermodynamic data and standard reduction potentials. In addition, values for the following constants are given: $R = 8.314 \text{ J/(mol}\cdot\text{K})$, $R = 0.08206 \text{ L}\cdot\text{atm/(mol}\cdot\text{K})$, F = 96485 °C/mol

Supporting material allowed: Calculator (accepted types are: Citizen SR-270X or Hewlett Packard HP30S)

Teacher: Kolbjørn Hagen, Contact under the exam: Torbjørn Ljones, phone: 99553989

Examination results: No later than June 11th, 2012

1. a (3p) Balance the following redox equations:

 $NO_3(aq) + Zn(s) \rightarrow NH_4(aq) + Zn^{2+}(aq)$ (acidic water solution) $Fe_3O_4(s) + ClO(aq) \rightarrow FeO_4^{2-}(aq) + Cl^{-}(aq)$ (basic water solution)

- b (2p) What is the oxidation number for phosphorus in the following compounds: PO_4^{3-} , P₄, PH₃, POCl₃, PCl₃
- c (3p) Ibuprofen is a common pain-relieving and fever-reducing medicine.
 Analyses of ibuprofen is giving the following composition (mass percent):
 75.69 % carbon, 8.80 % hydrogen and 15.51 % oxygen.
 What empirical formulae for ibuprofen can you determine from these results?
- d (3p) What is the number of protons, neutrons and electrons in ³⁹K⁺ and in ⁵²Cr? Give the electron configuration of potassium (K) and determine if this element is paramagnetic or diamagnetic. State the reason for your answer.
- e (2p) FeCl₃ will dissociate completely in ions when dissolved in water. What is the freezing point of a solution made of 10.0 grams iron trichloride in 100.0 grams of water?

Data given: $K_{f}(H_2O) = 1.86 \text{ °C/m}$

f (3p) Methanol can be made in industry from carbon monoxide and hydrogen in the following reaction:

 $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$

In a closed container with a volume of 1.00 L we have originally 14.0 grams CO, 2.02 grams H_2 and no methanol. The temperature is increased to 780 °C and the reaction goes to equilibrium. The amount of CO is then reduced to 4.20 grams. What is the value of the equilibrium constant, K_c , for this reaction?

- 2. a (2p) Calculate pH in a 0.150 M water solution of HF.
 - b (3p) To 1.00 L of the solution in a is added 2.00 grams of solid sodium hydroxide (NaOH). What is the pH in this solution now?
 - c (1p) How many grams of magnesium hydroxide, Mg(OH)₂, may be dissolved in 1.00 L of pure water?
 How many grams of Mg(OH)₂ may be dissolved in 1.00 L of a buffer where pH = 8.00?

Data given: $K_a(HF) = 3.5 \cdot 10^{-4}$,

 $K_{sp}(Mg(OH)_2) = 2.06 \cdot 10^{-13}$

- 3. A galvanic cell consists of a lead electrode in a 0.10 M water solution of Pb^{2+} as one half cell, and a silver electrode in a 0.010 M water solution of Ag^{+} as the other half cell. The two half cells are connected with a salt bridge and the temperature is 25 °C.
 - a (3p) What reaction is spontaneous in the cell under these conditions, what voltage is measured, and which electrode is the cathode?
 - b (3p) Can you, using electrochemical data, determine the change in Gibbs free energy (ΔG°) and the value for the equilibrium constant (K) for the cell reaction?
- 4. When sulfuric acid is produced sulfur dioxide is oxidized to sulfur trioxide according to the following reaction: $2SO_2(g) + O_2(g) \rightarrow 2SO_2(g)$
 - a (2p) What change in enthalpy (ΔH°) can be calculated for this reaction at 25 °C? Is this reaction endothermic or exothermic?
 - b (2p) Would you expect the change in entropy for this reaction to be positive or negative? State the reason for your answer. Check you answer by calculating ΔS° from thermodynamic data
 - c (3p) Calculate the equilibrium constant for this reaction at 25 °C.
 - d(2p) At what temperature will the equilibrium constant for this reaction have the value K = 1.0? Assume that ΔH° and ΔS° will be constant in the actual temperature area.

Data given: $S^{\circ}(O_2(g)) = 205.2 \text{ J/(mol K)}$

- 5. $a(3p)^{-14}C$ is a radioactive isotope which is decomposed with a β -particle emission. It has a half life of 5730 year.
 - i) What is the value of the rate constant, k, for this decomposition?
 - ii) What is the isotope produced in this decomposition? Write down the equation for what is taking place
 - b (3p) N₂O₅ will decompose in a first order reaction into N₂O₄ and O₂. At 70 °C a rate constant for this decomposition is measured to be $k = 6.0 \cdot 10^{-3} \text{ s}^{-1}$. If this reaction has an activation energy of E_a = 115.0 kJ/mol, what is then then the value of the rate constant at 25 °C?