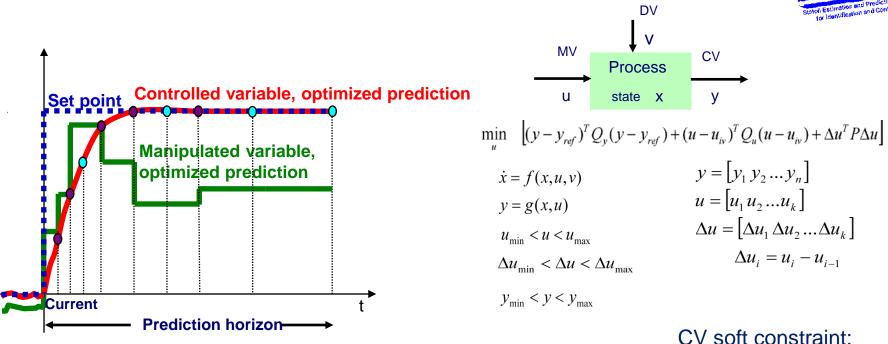


MPC in Statoil


Stig Strand, specialist MPC

Statoil Research Center 93 → SINTEF Automatic Control 91-93 Dr. ing 1991: Dynamic Optimisation in State Space Predictive Control Schemes

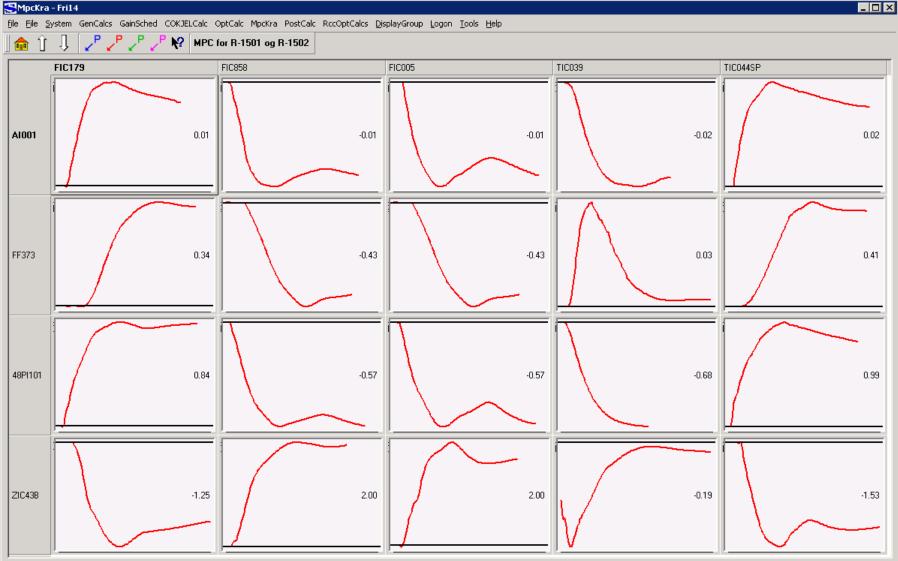
MPC

- MV blocking \rightarrow size reduction
- CV evaluation points \rightarrow size reduction
- w*RP² in objective • CV reference specifications \rightarrow tuning flexibility set point changes / disturbance rejection
- Soft constraints and priority levels \rightarrow feasibility and tuning flexibility

 $y < y_{max} + RP$

 $0 \le RP \le RP_{max}$

MPC Solver - Control priorities

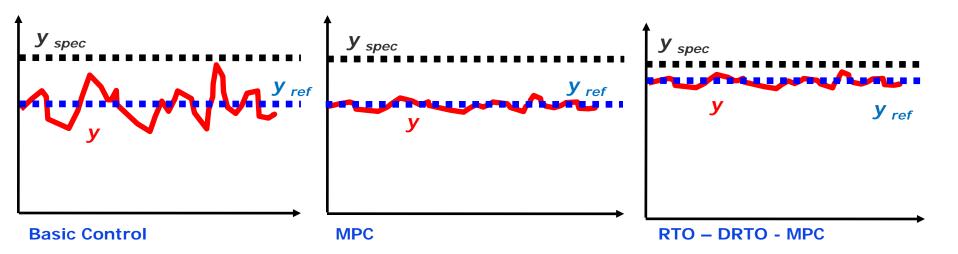

- 1. MV rate of change limits
- 2. MV high/low Limits
- 3. CV hard constraints ("never" used)
- 4. CV soft constraints, CV set points, MV ideal values: Priority level 1
- 5. CV soft constraints, CV set points, MV ideal values: Priority level 2
- 6. CV soft constraints, CV set points, MV ideal values: Priority level n
- 7. CV soft constraints, CV set points, MV ideal values: Priority level 99

Sequence of steady-state QP solutions to solve 2 - 7 (or NLP if nonlinear models)

Then a single dynamic QP to meet the adjusted and feasible steady-state goals (or iterated QP if nonlinear models)

MPC linear models

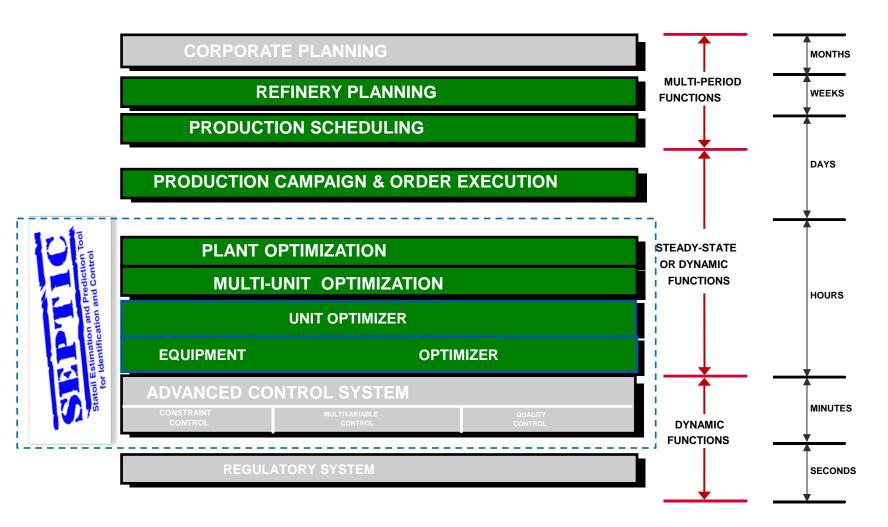
MPC – nonlinear models


- Open loop response is predicted by non-linear model
 - > MV assumption : Interpolation of optimal predictions from last sample
- Linearisation by MV step change
 - > One step for each MV blocking parameter (increased transient accuracy)
- QP solver as for experimental models (step response type models)
- Closed loop response is predicted by non-linear model
- Iterate solution until satisfactory convergence

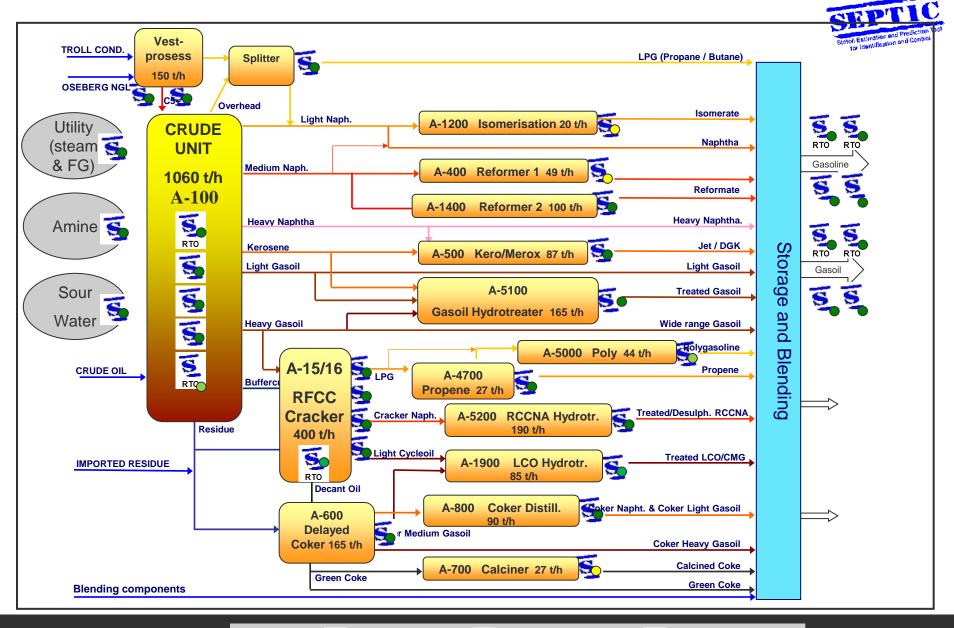
Contributions of MPC

- Flexible, implements decoupling, feedback and feed-forward
- Improved process response to feed variations
- Improved product quality control
- Maximise capacity, maximise profit, reduce cost
- Respect process constraints related to equipment or environment
- Increased process regularity

PROCESS CONTROL "The SEPTIC story"



- The in-house developed SEPTIC MPC tool was established in 1997 and has continuously been improved since then, securing state-of-the-art technology
- The process control group at R&D is responsible for SEPTIC, and works with Statoil customers only
- The philosophy with SEPTIC is to implement MPC applications together with the users, which have resulted in;
 - Flexible and quick installations
 - Cheaper solutions than using external vendors
 - Non-bureaucratic way of work
 - Building in-house competence
- In 2013 there are 90 (+/-) SEPTIC applications installed in Statoil


Planning and control layers in oil refining

Mongstad Refinery – Septic MPC & RTO

Notation:

S Running Application

5 Future Application

SEPTIC applications Mongstad 2014

Area	Unit	Арр	Scope	#of MV	#of CV	Description
A1	A-0100	MPCSPLT	MPC	16	24	Nahta stabilizer and 2 LNA/MNA splitters
A1	A-0100	MPCFVRM	MPC	12	29	Crude feed & preflash control
A1	A-0100	HEXOPT	RTO	8	11	Crude feed heat exchanger optimization
A1	A-0100	PasBal	MPC	7	9	Crude heaters pass balancing
A1	A-0100	ESTT101	CALC	-	-	Calc app for soft sensors crude unit
A1	A-1100	MPCNGL	MPC	10	9	2 paralell LPG/Naphta splitters, Vestprosess pipeline feed
A1	A-0100	MPCT101	MPC	31	42	Crude atm distillation, jet fuel unit and gasoil hydrotrea
A1	A-1100	MPCLPG	MPC	10	11	C3/C4 splitters Vestprosess
A2	A-0600	MPCT601	MPC	8	5	Delayed cocker fractionator
A2	A-0800	MPCDES	MPC	4	4	Delayed coker overhead hydrotreating and destillation
B1	A-1500	ESTB1	CALC	-	-	Calc app for cat cracker
B1	A-1500	RCCOPT	RTO	10	21	Optimizer cat cracker
B1	A-1500	MpcKra	MPC	11	19	Cat cracker reactor and regenerator control
B1	A-1500	MpcDes	MPC	12	11	Cat cracker main fractionater control
B1	A-1600	MPCBUT	MPC	4	5	Cat cracker LPG/Naphta splitter
B1	A-1600	MpcAbs	MPC	5	8	Cat cracker fuel gas/heavier splitcontrol
B2	A-1900	A-1900	MPC	12	19	LCO hydrotreating
B2	A-4000	A-4000	MPC	14	15	2 parallell amine regenerator control with foaming con
B2	A-4300	T-4352	MPC	3	5	Sour water stripper control
B2	A-4700	MpcPro	MPC	4	5	Cat cracker LPG C3/C4 splitter
B2	A-5000	A-5000	MPC	40	46	Cat cracker Butene polymerization unit
B2	A-5200	A-5200	MPC	4	12	Cat cracker naphta hydrotreating
B3	A-1400	MPC_R-1400	MPC	6	22	Cat reforming control
B 3	A-21/25	MPC-SG2500	MPC	7	8	Steam & Fuel gas network control
YA	A-6200	LUCBBL1	MPC	10	21	Gasoline blender #1 lineup capasity control
YA	A-6200	LUCBBL2	MPC	10	21	Gasoline blender #2 lineup capasity control
YA	A-6500	LUCGOB1	MPC	10	19	Gasoil blender #1 lineup capasity control
YA	A-6500	LUCGOB2	MPC	9	18	Gasoil blender #2 lineup capasity control
YA	A-6200	MPCBBL1	RTO	11	31	Gasoline blender #1 product quality control
YA	A-6200	MPCBBL2	RTO	11	31	Gasoline blender #2 product quality control
YA	A-6500	MPCGOB1	RTO	10	24	Gasoil blender #1 product quality control
YA	A-6500	MPCGOB2	RTO	10	24	Gasoil blender #2 product quality control
		Grand Total:		319	529	

Comments or questions?

MPC in Statoil

Stig Strand Specialist stra@statoil.com Tel: +4748038734

www.statoil.com

