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Abstract 

 

It has been suggested that human behavior in general and cognitive performance in 

particular emerge from coordination between multiple temporal scales. In this paper, we 

provide quantitative support for such a theory of interaction-dominant dynamics in human 

cognition by using wavelet-based multifractal analysis and accompanying multiplicative 

cascading process on the response series of 4 different cognitive tasks, simple response, word 

naming, choice decision and interval estimation. Results indicated that the major portion of 

these response series had multiplicative interactions between temporal scales, visible as 

intermittent periods of large and irregular fluctuations (i.e., a multifractal structure). 

Comparing two component-dominant models of 1/f α fluctuations in cognitive performance 

with the multiplicative cascading process indicated that the multifractal structure could not be 

replicated by these component-dominant models. Furthermore, a similar multifractal structure 

was shown to be present in a model of self-organized criticality in the human nervous system, 

similar to a spatial extension of the multiplicative cascading process. These results illustrate 

that a wavelet-based multifractal analysis and the multiplicative cascading process form an 

appropriate framework to characterize interaction-dominant dynamics in human cognition. 

This new framework goes beyond the identification of 1/f α power laws and non-Gaussian 

distributions in response series as used in previous studies. Taken together, the present paper 

provides quantitative support for a paradigm shift towards interaction-dominant dynamics in 

human cognition. 
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Introduction 

 

The emergence of spatial structures and temporal functions is a common feature of 

complex systems and reflects their ability to adapt to changes in their environments. The 

human nervous system is such a complex system consisting of about 1011 neurons with 1015 

synapses (Kandel, Schwartz, & Jessell, 2000), and shifts in their coordinated and 

interconnected activity reveal changes in human cognition and behavior. The complexity seen 

in both the human nervous system and cognitive functions derives from the existence of 

numerous sub-structures and sub-functions that are distributed over multiple spatiotemporal 

scales. For example, the human cognitive function involves a microscopic scale of single 

neurons generating action potentials, but also a macroscopic scale of global activity in 

multiple neural structures generating behavior. Attempts are often made in both psychology 

and neuroscience to reveal the basic structural or functional architecture that can decompose 

the human nervous system and cognitive function into less complex pieces or components.  In 

these so-called component-dominant views, focus lies on relationships between the simpler 

components within a single scale, for example the scale of molecules, neurons, or neural 

structures, while assuming that these are independent from relationships at other scales. 

However, when multiple scales of the phenomenon are interacting, this fundamental 

assumption of component-dominant views breaks down.  

In contrast, so-called interaction-dominant views argue that the widely distributed 

ensembles of neural activity during task performance suggest inevitable interactions between 

the multiple spatial scales of the human nervous system. Furthermore, functional neural 

groups and pathways are thought to emerge through interactions between spatiotemporal 

scales that represent new behaviors or alternative ways to interact with a changing 

environment (Edelman, 1987). For example, the biochemical processes within a single neuron 
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can be seen as interactions between molecules that in turn define its firing pattern in 

interaction with its environment of adjacent neurons. The coordination or interaction of firing 

patterns within neural clusters defines the functions within and between neural structures that 

ultimately define human cognition and behavior in the context of an environment. Reversely, 

the environment constrains human behavior and the activity of the human nervous system 

through external stimulation. These external stimuli dissipate from macroscopic scales of the 

environment to microscopic scales of molecules, constraining the activity on each scale in 

between. Thus, the range from molecular interactions within single neurons to the interactions 

between the human nervous system and its environment, creates a continuum of interactions 

between the microscopic and macroscopic scales that are all part and parcel of human 

cognition. Consequently, according to interaction-dominant dynamics, theories of the human 

nervous system and cognition should not be decomposed into functions of encapsulated 

molecules, neurons, neural structures or behavior without considering their context or mutual 

interactions.  

The existence of multiple scales reappears in the temporal domain of cognitive 

performance. Response series of a large number of trials can be decomposed into fast 

fluctuations and slow evolving trends under the assumption of the existence of independent 

cognitive time scales. For example, on short time scales of a few trials, the response series 

fluctuates in an irregular or noisy way thought to arise from the automatic and unconscious 

mechanisms of motor error correction (e.g., Gilden, 2001; Wing & Kristofferson, 1973). On 

longer time scales of hundreds or even thousands of trials, the same response series show 

additional slow regular trends thought to arise from the internal rhythm of the cognitive 

system (Gilden, 2001; Gilden, Thornton & Mallon, 1995) or from different levels of 

consciousness (Ward, 2002). The labeling of scale-dependent functions as levels of 

consciousness or metal sets, however, is only meaningful when they are mutually independent 
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and, as a result, a unique decomposition of the response series can be made. Only in this case 

can the measured response series be seen as a simple sum of scale-dependent sub-functions. 

In contrast to this component-dominant view, the presence of interactions between multiple 

time scales makes the scale-dependent sub-functions interdependent. This interdependency 

causes the breakdown of the fundamental assumptions of conventional statistical analyses and 

blends the abstract categories of level of consciousness, priming effects, motor error 

corrections and mental sets into one coherent concept of cognition. The main aim of the 

present paper is to introduce a new quantitative framework that can analyze human behavior 

as a coherent whole, thereby providing quantitative evidence for interaction-dominant 

dynamics in human cognition.  

In the research on prolonged response series, two features are suggested to be 

omnipresent and therefore to represent the quantitative framework for the analysis of response 

tasks. First, when a response time series is decomposed by a Fourier transformation into a 

superposition of oscillations with frequency f, their squared amplitudes are shown to relate by 

a 1/f α power law (e.g., Farrell, Wagenmakers & Ratcliff, 2006; Kello, Anderson, Holden, & 

Van Orden, 2008; Kello, Beltz, Holden, & Van Orden, 2007; Thornton & Gilden, 2005; Torre 

& Delignières, 2008; Torre, Delignières, & Lemoine, 2007b; Torre & Wagenmakers, 2009; 

Van Orden & Holden, 2002; Van Orden, Holden, & Turvey, 2003, 2005; Wagenmakers, 

Farrell, & Ratcliff, 2004, 2005; Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009) The 

α exponent is shown to lie within the interval 0 < α < 1 in a broad range of cognitive tasks, 

including interval estimation, reaction time, mental rotation, lexical decision, serial search, 

and parallel search (e.g., Gilden, 1997, 2001). This implies that response series possess a 

long-range autocorrelation that defines the memory of the underlying cognitive system that 

can span thousands of trials. Thus, the presence of 1/f α fluctuation is illustrated by a regular, 

less-than-random structure of the response series and implies that it cannot be considered as 
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random noise around an average response time. Gilden and coworkers (Gilden, 2001; Gilden 

et al., 1995; Thornton & Gilden, 2005) suggested that cognitive performance results from 1/f α 

fluctuation in the internal clock of the cognitive system combined with white noise in the 

motor execution system or as priming effects. A similar approach has been taken in the 

investigation of timing tasks such as finger tapping, where a motor error correction term is 

defined as differentiated white noise (Wing & Kristofferson, 1973) and added to models of 1/f 

α fluctuation (e.g., Delignières, Torre, & Lemoine, 2008; Torre & Delignières, 2008; Torre & 

Wagenmakers, 2009). Ward (2002) has suggested that 1/f α fluctuation originates from the 

sum of autoregressive processes, where each scale-dependent process is describing conscious, 

unconscious, and preconscious components of the cognitive system. These components are 

also hypothesized to be the output of independent groups of neurons in the central nervous 

system (Chen, Ding, & Kelso, 2001; Ding, Chen, & Kelso, 2002; Ward, 2002).  

In contrast to the above component-dominant perspectives, Van Orden et al. (2003, 

2005), followed by Kello et al. (2007), proposed a paradigm shift from considering 1/f α 

fluctuation as a quantitative by-product of scale-dependent processes to seeing the α exponent 

as a universal signature of interaction-dominant dynamics (Jensen, 1998). These authors 

suggested that human cognition and behavior self-assemble critical states, allowing for 

flexible adaptation to changing circumstances. This interaction-dominant theory was inspired 

by the contemporary inter-disciplinary literature of self-organizing critical systems that 

produce 1/f α fluctuation as a statistical output (Bak, 1996; Jensen, 1998). In a reaction to this 

proposal, Wagenmakers and colleagues (Torre & Wagenmakers, 2009; Wagenmakers et al., 

2004, 2005) argued that this view – though exciting – is premature, as 1/f α fluctuation can 

also be generated by the far simpler component-based models mentioned above. 

Consequently, a 1/f α power law in itself cannot distinguish between component- and 

interaction-dominant dynamics. For instance, spectral portraits always involve a Fourier 
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transformation which assumes independence between the oscillations (i.e., non-interacting 

components). Yet, it is noteworthy that independence between oscillations has not been 

demonstrated empirically. Thus, 1/f α power laws, thought to be ubiquitous in human 

performance (e.g., Kello et al., 2007; Van Orden et al., 2003, 2005), are neither necessary nor 

sufficient evidence of interaction-dominant dynamics.    

The second feature of prolonged response series is that they possess a non-Gaussian 

distribution with heavy tails (Holden, 2002; Holden, Van Orden, & Turvey, 2009). These 

heavy tails arise from extreme response intervals and are often eliminated as singular or rare 

events. But even when response times more than three standard deviations from the average 

are eliminated, heavy tails remain present in the probability density function. The component-

dominant models of human cognition cited above fail to reproduce the non-Gaussian 

distribution seen in the response series since they are based on a superposition of scale-

dependent sub-processes that are Gaussian distributed. In contrast, non-Gaussian probability 

density functions like log-normals or power laws are shown in the interdisciplinary literature 

to arise from multiplicative noise where the sub-processes are interdependent (e.g., Sornette, 

2004). However, it is problematic to unequivocally equate the shape and width of a particular 

non-Gaussian probability density function with interaction or coordination between multiple 

temporal scales of a response series. The main problem of equating multiplicative interactions 

with non-Gaussian distribution is that the probability density function does not contain 

information about the temporal ordering of the extreme trials within its tails. This means that 

even though multiplicative interactions imply a non-Gaussian probability density function, the 

reverse statement is not necessarily true.  

The fundamental insufficiency of unequivocally equating the presence of a 1/f α power 

law and a non-Gaussian probability density function with the presence of multiplicative 

interactions across temporal scales can be eliminated by a third, more general feature of 
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complex systems, namely intermittency. In a response series, intermittency is visible as 

distinct periods of large and irregular performance variability that reflects the waxing and 

waning of the subjects’ attention to the stimuli or their intention to act according to the 

experimental instructions. These intermittent fluctuations in a response series imply an 

inhomogeneous distribution of response time variability. The inhomogeneous distributed 

variability within the response series leads to a time-dependency in both the probability 

density function and α exponent (i.e., local regularity). However, the conventional analyses 

and models of both 1/f α power law and non-Gaussian probability density function of a 

response series assume that the α exponent is homogenous in time, and they are therefore 

blind to the presence of intermittency (Mandelbrot, 1997). Intermittent behavior of complex 

systems has therefore been viewed as a property that is difficult to quantify by a single 

statistical parameter.  

The solution to this fundamental problem was developed by Mandelbrot (1974) 

through stationary models of multiplicative interactions between scale-dependent vertexes in 

fluid turbulence.  These models were termed multiplicative cascading processes and classify 

intermittency in phenomena as diverse as stock market fluctuation (Mandelbrot, 1997), heart 

rate variability (Ivanov, Rosenblum, Peng, Mietus, Havlin, Stanley, & Goldberger, 1996; 

Ivanov, Amaral, Goldberger, Havlin, Rosenblum, Struzik, & Stanley, 1999; Lin, 2003), stride 

rate variability (Scafetta, Griffin, & West, 2003), earthquakes (Sornette & Ouillon, 2005), 

galaxy distributions (Fang, 2006), wind speed fluctuation (Kavasseri & Nagarajan, 2005), 

impact fragmentations (Katsuragi, Sugino, & Honjo, 2003), and other complex phenomena in 

physics and chemistry (cf. Stanley & Meakin, 1988). Common for these models is that the 

intermittent structure in time or space is defined by multiplicative interactions that transport 

energy and information across multiple spatiotemporal scales. Furthermore, the intermittent 

structure generated by multiplicative interactions is the generic concept of multifractality and 



Beyond 1/f α fluctuation - 9 

 

strongly suggests emergent changes in cognitive performance. In the current paper, we will 

illustrate that the generation of intermittent fluctuation by multiplicative interactions between 

the temporal scales of cognitive performance can be investigated quantitatively through 

multifractal analyses. 

The aim of this paper is to outline a sufficient and more complete quantitative 

framework of interaction-dominant dynamics in human performance by equating interaction-

dominant dynamics with interaction, coordination, and interdependence between multiple 

scales in both time and space. As this is relatively new in psychological literature, the method 

section presents an introduction of multifractal analysis and multiplicative cascading 

processes. Although the analyses are rather technical, they will become clearer in the results 

section where the quantitative framework is tested on two existing data sets in the literature. 

One data set is based on a simple response task, a choice decision task, and an interval 

estimation task (Wagenmakers et al., 2004), the other data set on a simple response task and a 

word naming response task (Van Orden et al., 2003). 

 

Methods 

 

The method section consists of several parts that together introduce a quantitative 

framework for investigating interaction-dominant dynamics in human performance. We 

quantitatively define the presence of multiplicative interactions between temporal scales, 

causing intermittency in response series, under the heading “The multifractal spectrum”. The 

computation of the multifractal spectrum is based on wavelet extensions of conventional 

Fourier transformation, which are introduced first under the heading “The wavelet lens”. The 

presence of multiplicative interactions in a response series is then modeled as a 

‘Multiplicative cascading process’ under the heading with the same name, which is known to 
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produce the multifractal structure of a time series (Muzy & Bacry, 2002). A surrogate test is 

subsequently introduced under the heading “Validation of multiplicative interactions” to 

validate the presence of multiplicative interactions in the response series. A wavelet-based 

statistical test is finally introduced in the last part, “Statistical analysis of multiplicative 

interactions”, to identify inhomogeneous wavelet variance, as the latter is a necessary 

consequence of multiplicative interactions. For the technically advanced reader, the 

mathematical relationship between the multifractal spectrum and the multiplicative cascading 

process are presented in the Appendix, together with the algorithms for the wavelet-based 

deduction of the multifractal spectrum.     

 

The wavelet lens: Response series are typically decomposed into a sum of oscillations with 

wavelength Δt = 1/f  in order to define the presence of the conventional 1/f α power law. This 

decomposition is performed by a mathematical lens called a Fourier transformation. The 

fundamental assumption of the Fourier transformation is that the amplitude AΔt of each 

oscillation is independent of the others and thus without amplitude modulation in time (see 

Figure 1A). However, this fundamental assumption is violated by the presence of so-called 

laminar and intermittent periods in the response series, consisting of small, regular 

fluctuations and large, irregular fluctuations, respectively. In the intermittent periods, the 

amplitude of the oscillations suddenly increase for the short wavelengths Δt. This implies that 

the 1/f α power law becomes time dependent with the single α exponent deduced by the 

Fourier lens defining only the average structure or regularity of the intermittent response 

series. Intermittency, or local regularity of the response series, thus lies within the “blind 

spots” (Mandelbrot, 1997, p. 163) of the Fourier lens. However, these spectral blind spots can 

be revealed by a wavelet transformation, as illustrated by several successful applications in a 
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range of scientific disciplines over the last decade (e.g., Aldroubi & Unser, 1996; Hubbard, 

1998; Prasad & Lyengar, 1997; Van den Berg, 1999; Walczak, 2000).  
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Figure 1. (A) The response series is decomposed into a series of sine waves by the conventional Fourier lens. 

Their stationary amplitude AΔt is a result from the independency between the sine waves with different 

wavelength Δt. (B) The wavelet lens decomposes the response series into wavelet coefficients WΔt(t) within a 

cone. The amplitude modulation of the sine waves caused by interactions between the temporal scales Δt is then 

captured by translating the cone in time. Thus, wavelet transformation can capture the interaction-induced 

temporal changes of the sine wave amplitudes which are not possible through the Fourier lens. 

 

The wavelet transformation fits a waveform of width ∆t to the response series in each 

time instant t. For each fit, the wavelet coefficients W∆t(t) define the amplitude of the 

waveform and decompose the response series into a time-scale plane (see Figure 1B). In 

intermittent periods of large response variability, the wavelet coefficients will be large across 
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scales ∆t, while it becomes small in the laminar periods of small variability. Thus, the 

alignment of large wavelet coefficients into distinct cones in the time-scale plane points to 

intermittent periods of large performance variability (see Figure 1B and upper panel in Figure 

2B). Consequently, wavelet transformations can identify interactions between the amplitudes 

of oscillations across scales ∆t causing intermittent, emergent or coherent periods of large 

fluctuations within the response series. 

In the present paper, two different wavelet algorithms will be used to cross-validate 

the presence of intermittency. The Continuous Wavelet Transformation (CWT) uses a Morlet 

waveform to decompose the response series into a continuous range of temporal scales 

(Goupillaud, Grossmann, & Morlet, 1984) (see upper panels in Figure 2).  In addition, the 

Maximum Overlap Discrete Wavelet Transform (MODWT) with an 8th order least 

asymmetric waveform is used to decompose the response series into a discrete range of scales 

(Daubechies,1992; Mallat, 1989, 1999; Percival & Walden, 2000) (see lower panels in Figure 

2). See the Appendix for the technical details of the wavelet algorithms.    
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Figure 2. (A) The upper panel illustrates a Morlet waveform for the continuous wavelet transformation (CWT). 

The waveform is centered and scaled according to the width ∆t of the wavelet cone (black lines). The lower 

panel illustrates a Least Asymmetric waveform for the maximum overlap discrete wavelet transformation 

(MODWT). In contrast to the CWT, the latter waveform is scaled for discrete scales ∆t = 2, 4, 8, … , 512. Note 

that within the wavelet cone, both the Morlet and Least Asymmetric waveform resemble the sine wave used in 

conventional Fourier transformation. (B) The upper panel illustrates the wavelet variance [WΔt(t)]2 in the time-

scale plane obtained from the CWT. The lower panel defines the scale-dependent processes obtained by the 

inverse MODWT for the temporal scales ∆t = 2, 4, 8, … , 512.  

 

The multifractal spectrum: The identification of conventional 1/f α fluctuation in the response 

series by a power spectrum analysis, detrended fluctuation analysis, rescaled range analysis, 

scaled window variance analysis or dispersion analysis, are all based on temporal scaling of 

the response time variance (e.g., Chen, Ding, & Kelso, 1997, 2001; Delignières, Lemoine, & 

Torre, 2004; Delingières et al., 2008; Gilden, 1997, 2001; Gilden et al., 1995; Kello et al., 

2007; Lemoine, Torre, & Delignières, 2006; Pressing, 1999; Pressing & Jolley-Rogers, 1997; 

Torre, Delignières, & Lemoine, 2007a, 2007b; Van Orden & Holden, 2002; Van Orden et al., 

2003, 2005; Wagenmakers et al., 2004, 2005). These analyses thus assume that the response 

series has a stationary Gaussian probability density function such that it possesses 

homogenously distributed fluctuations. However, when the participants’ attention to stimuli 

or commitment to the response task changes, the fluctuations will be inhomogeneously 

distributed, visible as intermittent periods of large performance variability. In this case, the 

response series will possess a probability density function with non-Gaussian heavy tails (e.g., 

Holden et al., 2009). Consequently, it is no longer sufficient to analyze the scaling of the 

variance (i.e., second order statistical moment) and the entire probability density function 

defined by all q-order statistical moments should be considered. The conventional 1/f α power 
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law1 can then be generalized for an arbitrary non-Gaussian probability density function by the 

q-order moments of wavelet coefficients W∆t(t) (e.g., Abry, Flandrin, Taqqu, & Veitch, 2000, 

2002; Muzy, Bacry, & Arneodo, 1991, 1993, 1994): 

 

( )
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1 ( )
N

q q
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W t t
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ζ

Δ
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∝ Δ∑          (1) 

 

where N is the number of trials within the response series. The spectrum of exponents ζ(q) 

defines, for small q, the regularity of the laminar periods of little performance variability and, 

for large q, the regularity of intermittent periods of large performance variability. In the 

special case when q = 2, the multiscaling exponent ζ(q) coincides with the α exponent and 

defines the average structure or regularity of the response series. Furthermore, when 

multifractality is present the spectrum of exponents ζ(q) is nonlinearly convex, which implies 

that the intermittent periods of large performance variability will possess a more irregular 

structure (i.e., a zigzag pattern) compared to laminar periods of little variability. Thus, in a 

cognitive task multifractality will be present because large increases in response times have to 

be counter-acted by large decreases in order not to breach the time limit of the task. This 

generates a less correlated zigzag pattern in the intermittent periods of large response time 

variability, defined by a decrease in a local h exponent. In contrast, during laminar periods of 

little response time variability the structure of the response series will evolve freely with little 

influence of the time limits of the experiment. In this case, the structure will be correlated and 

defined by an increase in the local h exponent. Consequently, the distribution of h exponents 

summarizes the temporal change in regularity or patchiness in the response series, which 

arises from the coordination between its temporal scales. This distribution is called a 

                                                 
1 The inverse frequency 1/f is equal to the temporal scale Δt.  
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multifractal spectrum D(h), which is related to ζ(q) by the following Legendre transformation 

(e.g., Riedi, 2002): 

 

( )

( ) ( )

d qh
dq

D h qh q

ζ

ζ

=

= −
          (2) 

 

The width hmax – hmin of the multifractal spectrum D(h) defines the amplitude difference 

between the variability in the intermittent and in the laminar periods within the response 

series. As a result, the multifractal spectrum width hmax – hmin quantifies the influence of the 

multiplicative interaction, or coordination, between the multiple time scales of the response 

series. When the multifractal spectrum D(h) collapses into a single h (i.e., hmax – hmin = 0), the 

response series is monofractal and no coordination between the temporal scales is present. In 

this particular case, there will be no emergence of cognitive functions seen as intermittent 

change in the performance variability and the response series will thus possess a 

homogeneous fluctuation.  

To summarize, intermittency is the quantitative concept of emergent change in 

behavior defined through the inhomogeneously distributed variability within the response 

series. These changes might be fundamental shifts in the cognitive system in order to adapt to 

changes in its complex environment. These same intermittent changes can be quantitatively 

identified as the coordination of the amplitudes of the wavelet coefficients across multiple 

time scales, as illustrated in Figure 2B and summarized statistically in the multifractal 

spectrum D(h). The multifractal spectrum width hmax – hmin therefore quantifies the amount of 

emergent changes in the participant’s commitment, attention to stimuli, or intention to act 

within the constraints of the cognitive task.  
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Multiplicative cascading process: In order to model an intermittent response series, a 

fundamental principle for the interactions across multiple time scales is necessary. Such a 

fundamental principle can be defined as a multiplicative cascading process for which the 

general statistical framework was introduced by Mandelbrot (1997) in econometrics and 

further developed by Muzy and Bacry (2002) and Chainais, Riedi, and Abry (2005). The 

multiplicative cascading process is defined by the product of the multipliers within the 

wavelet cone in the time-scale plane illustrated in Figure 1B. When the products of multipliers 

becomes small in the scale limit ∆t→0 (i.e., the tip of the translating cone in Figure 1B), it 

reflects laminar periods of little performance variability. In contrast, intermittent periods of 

large performance variability emerge when the same product of multipliers becomes large. 

The crucial property of the multiplicative cascading process is that the interaction multipliers 

have a stationary (i.e., time-independent) distribution in the time-scale plane even though both 

its local regularity (i.e., h exponent) and its probability density function are non-stationary 

(i.e., time-dependent). Consequently, the probability density function of the interaction 

multipliers quantifies the fundamental principle of coordination of the multiple temporal 

scales within the multiplicative cascading process. This means that even though the sub-

processes or components within the response series change in time because of their mutual 

coordination, the nature of the coordination itself is independent of time. The mathematical 

definition of the multiplicative cascading process is given by equations (A2) - (A7) together 

with Figures A1-3 in the Appendix. 

The distribution of interaction multipliers in the multiplicative cascading process is 

mathematically directly related to the multifractal spectrum. The alignment of small and large 

multipliers in the laminar and intermittent periods is equivalent to the alignment of small and 

large wavelet coefficients such that the distribution of the interaction multipliers in the time-

scale plane is equivalent with the multifractal spectrum. Consequently, the multifractal 
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spectrum quantifies the nature of the coordination between the multiple time scales of a 

response series, which is not possible through a single α exponent. Figure 3A illustrates this 

point further by a MODWT decomposition of two time series with equal α exponent (α = 1), 

where the upper panel is a multiplicative cascading process with multifractal spectrum width 

hmax – hmin = 1.2, while the lower panel represents a monofractal series or pink noise with hmax 

– hmin = 0. The difference between laminar and intermittent periods in the former is most 

distinct at the smallest scales (i.e., ∆t = 2, 4 and 8) where the corresponding probability 

density function possesses non-Gaussian heavy tails (see upper panel in Figure 3B). The 

magnitude of these heavy tails defines the width of the distribution of interaction multipliers 

in the time-scale plane and thus the width hmax – hmin of the multifractal spectrum D(h) (see 

Figure 3C). In contrast, the MODWT decomposition of pink noise (see lower panel of Figure 

3A) has no intermittent periods, such that the wavelet coefficients are Gaussian distributed 

(see lower panel of Figure 3B) and the multifractal spectrum collapses into a single point (see 

the gray dots in the upper left part of Figure 3C). As a result, the multifractality represents the 

multiplicative interactions between temporal scales seen in the alignment of the large wavelet 

coefficients (see upper panel of Figure 3A), while the absence of multiplicative interactions in 

a monofractal time series implies the lack of coordination between its temporal scales with no 

alignment of the coefficients (see lower panel of Figure 3A). In sum, Figure 3 illustrates that 

the coordination of multiple time scales revealed by the wavelet transformation lies within the 

blind spot of the Fourier lens.  



Beyond 1/f α fluctuation - 18 

 

 

Figure 3. (A) The MODWT coefficients for the multiplicative cascading process (upper panel) and monofractal 

fluctuations or pink noise (lower panel) for scales ∆t = 2, 4, 8, 16, 32, 64, and 128. The upper panel shows time-

dependent changes in the coefficients that originate from the cumulative product of interaction multipliers, 

especially for the small scales ∆t→0. (B) The cumulative probability density function (pdf) of the MODWT 

coefficients, displayed in log-coordinates in order to visualize the tails. For the multiplicative cascading process 

(upper panel), a non-Gaussian distribution of the MODWT coefficients is present when ∆t→0 (i.e., deviations 

from the gray lines). For the pink noise (lower panel), the distribution is approximately Gaussian (gray lines) for 

all scales ∆t. (C) The multifractal spectrum D(h) estimated by the wavelet coefficients of MODWT (upper 

panel) and CWT (lower panel) through equations (1) and (2). The vertical and horizontal black bars are ±1 

standard deviation for the D(h) and h, respectively, of 100 realizations of the multiplicative cascading process. 

The gray arc defines the analytical result of this model and is within 1 standard deviation of the estimations. The 

small cluster of gray bars to the left of the arc in both panels defines the monofractal fluctuations or pink noise 

where the spectrum has collapsed into a single point D(h) = 1.   
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Validation of multiplicative interactions: In the above section, interaction-dominant dynamics 

was equated with multiplicative interactions between temporal scales of the response series 

and quantified by the width of the multifractal spectrum. It is important to validate that the 

obtained multifractal spectrum width hmax – hmin originates from the interactions between the 

multiple time scales and not from the mere presence of 1/f α power law and a non-Gaussian 

probability density function. This validation is possible by generating an ensemble of 

surrogate series in which the non-Gaussian distribution and 1/f α fluctuation are preserved 

while the interactions between the multiple scales are eliminated. When there is a significant 

difference between the multifractal spectrum width hmax – hmin of the response series and the 

average spectrum width of the ensemble of surrogates, then interactions between multiple 

time scales are present. 

 For each response series, an ensemble of 30 surrogates was generated. Each surrogate 

was generated through an Iterated Amplitude Adjusted Fourier transformation developed by 

Schreiber and Schmitz (1996). First, the rank ordering is stored of the amplitudes of both the 

response series and its power density spectrum obtained through a fast Fourier transformation. 

Secondly, the response series are randomly shuffled. Thirdly, an iterative procedure is 

initiated where the spectral amplitudes of the fast Fourier transformation of shuffled series are 

substituted with the stored spectral amplitudes of the original response series. The inverse fast 

Fourier transformation is then applied and the surrogate series are obtained in which the 

amplitudes are ranked as in the original response series. In the present study, the third step is 

iterated 500 times for all surrogate series to make sure that they obtain both a Fourier 

spectrum and a probability density function that are equal to the original response series. 

Multiplicative interactions between the temporal scales of the response series are present 

when the multifractal spectrum width of each response series is outside the 95 % confidence 

interval of the surrogate ensembles’ width (p < 0.05).  
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The important feature of the above procedure is that possible correlations between the 

Fourier phases are eliminated in step three. This means that the procedure eliminates the 

alignment of large wavelet coefficients seen in the upper panel of Figure 3A and therefore the 

intermittent structure of the response series. There are two cases in which there are no 

multiplicative interactions between temporal scales in the response series. The first case is 

when the multifractal spectrum width is within the ensemble of surrogate series but not equal 

to zero. In this case, the multifractality is induced by a stationary non-Gaussian probability 

density function of the response series rather than by interactions between multiple scales. 

Consequently, the response series can be characterized by the non-Gaussian function together 

with the 1/f α power law since the extreme trials are singular random events rather than 

intermittent periods of large variability. In the second case, the multifractal spectrum width is 

approximately zero and within the ensemble of surrogates. Only in this special case, the 

response series has a non-intermittent structure characterized by the 1/f α power law alone.  

 

Statistical analysis of multiplicative interactions: The presence of multiplicative interactions 

between temporal scales of the response series implies that the heavy tails of wavelet 

coefficients in the upper panel of Figure 3B increase when ∆t→0. If, on the other hand, the 

response series are sufficiently quantified by the 1/f α power law alone, the coefficients should 

be independent, Gaussian-distributed variables on all scales as in the lower panel of Figure 

3B, implying that no interactions are present. This can be tested statistically by a cumulative 

sum of squares-based statistics (i.e., D-statistics) of the wavelet coefficients (Percival & 

Walden, 2000; Whitcher, 1998). The D-statistics compare the variance of wavelet coefficients 

(i.e., [W∆t(t)]2) of the response series at each temporal scale ∆t, with 1000 series of Gaussian 

noise (see equations (A18)-(A22) in the Appendix). If a significantly large portion (i.e., > 

950/1000, with p < 0.05) of these series has equal or lower wavelet variance, then the 
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response series contains non-Gaussian distributed wavelet coefficients significantly different 

from those of conventional 1/f α fluctuation. In that case, the inhomogeneous distribution of 

wavelet coefficients of the multiplicative cascading process in the upper panel of Figure 3A 

has more pronounced heavy tails at the smallest temporal scales when ∆t→0 . In contrast, the 

coefficients of monofractal pink noise in the lower panel of Figure 3A are distributed 

homogenously in time and are indifferent from Gaussian noise. 

The same wavelet-based statistical test can also test the ability of cognitive 

performance models to replicate the presence of inhomogeneous distributions of wavelet 

coefficients in the time-scale plane of each response series. This is obtained by using the 

wavelet coefficients of 1000 realizations of the statistical model instead of Gaussian noise. If 

a significantly large portion (i.e., > 950/1000, with p < 0.05) of 1000 realizations of the model 

has equal or lower wavelet variance compared to each response series, then the model is not 

able to replicate the interactions across its temporal scales. In the present study, we will 

compare the superposition of 1/f α fluctuation and white noise (Gilden et al., 1995; Gilden, 

2001; Thorton & Gilden, 2005), an aggregated autoregressive process (Wagenmakers et al., 

2004; Ward, 2002), and the presently introduced multiplicative cascading process with respect 

to their ability to replicate the intermittent property of response series.  

 

Results and discussion 

 

The results section consists of three major parts, each concluded by a short discussion. 

In the first part, Interaction-dominant dynamics in cognitive performance, we will apply the 

multifractal analysis to the existing data sets of Wagenmakers et al. (2004) (Data set 1) and 

Van Orden et al. (2003) (Data set 2) in order to investigate the presence of multiplicative 

interactions between the temporal scales of a single response series. In the second part, 
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Component- versus interaction-dominant models of cognitive performance, we will compare 

the results of the multifractal analysis to the most common component-dominant models in 

the literature and to the presently suggested multiplicative cascading process. In the third part, 

Interaction-dominant dynamics in the nervous system, we will extend the quantitative 

framework of interaction-dominant dynamics to the self-assembled neural activity in the 

nervous system.    

 

Interaction-dominant dynamics in cognitive performance 

 

Data set 1: Wagenmakers et al.’s (2004) data set2 consists of 6 subjects participating in 3 

different cognitive tasks, a simple response, a choice decision, and an interval estimation task. 

Arabic numerals 1 to 9 were presented as visual stimuli on a computer screen until a response 

was registered. In the simple response task, the participants responded as fast as possible by 

pressing ‘/’ with their right index fingers. In the choice decision task, the participants 

responded as fast as possible without error by pressing ‘/’ with the right index finger when an 

even number was displayed and ‘z’ with the left index finger when an odd number was 

displayed. In the time interval estimation task, a one second time interval was estimated by 

the participants by pressing the ‘/’ key with their right index finger to mark the duration of the 

interval after stimulus onset. Furthermore, each of the three tasks had two within-task 

conditions, with either a short (randomized 200-600 ms) or a long (randomized 800-1200 ms) 

‘response to stimulus interval’ (RSI). The ordering of the short and long RSI was randomized 

for each participant and task. In all, Wagenmakers et al.’s (2004) data set contained 6x3x2 = 

36 response series of 1024 trials differing only in task instruction and RSI. All participants 

conducted the 3 tasks x 2 RSI sessions within one week with no more than 1 session per day, 

                                                 
2To be found at http://users.fmg.uva.nl/ewagenmakers/fnoise/noisedat.html 
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where the ordering of the task was set by the employment of a counter-balanced, Latin-square 

design. Response times below 100 ms were considered to be caused by anticipation of the 

next stimulus and eliminated from the data set before further analysis (cf. Wagenmakers et al., 

2004).  

 

Multiplicative interactions in data set 1: Figure 4 illustrates representative examples of 

response series in the simple response (upper left panel) and in the interval estimation (upper 

right panel) task, with corresponding decomposition into the time-scale plane by the CWT 

(lower panels). The simple response task has more pronounced intermittent periods of large 

performance variability compared to the interval estimation task (see upper panels in Figure 

4). This implies that the wavelet variance of the simple response task is less homogeneously 

distributed compared to the interval estimation task, which is observable as larger light areas 

especially at the finest scales, i.e., ∆t→0 (see lower panels). This difference becomes clearer 

in the bottom panel of Figure 5A, which shows that the wavelet coefficients of the MODWT 

for the simple response task have a less homogeneous fluctuation at the finest scales (∆t = 2, 

4, and 8 trials) compared to the interval estimation task. The inhomogeneous fluctuation in the 

simple response task leads to increases in the influence of heavy tails in the corresponding 

probability distribution as ∆t→0 (see upper panel in Figure 5B). This again implies a 

significantly (p < 0.05) wider multifractal spectrum width hmax – hmin than the mean ensemble 

width of the surrogates (see Figure 5C, upper panel). In contrast, the response series of the 

interval estimation task has more homogeneous fluctuation of the wavelet coefficients and 

therefore an approximately Gaussian distribution for all temporal scales ∆t, which implies an 

approximately monofractal spectrum (i.e., hmax – hmin ≈ 0). The multifractal spectrum was 

computed for both the continuous (CWT, black circles in Figure 5C) and the maximum 

overlap discrete wavelet transformation (MODWT, black squares in Figure 5C), and there 
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was a high correlation (R = 0.82, p  < 0.0001) between the estimations of their widths hmax – 

hmin.   

 

Figure 4. Representative examples of response series for the simple response task (upper left panel) and interval 

estimation task (upper right panel) in Z-scores. The bottom panels represent the power spectra [WΔt(t)]2 of the 

same response series when resolved into the time-scale plane.    
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Figure 5: (A) A representative example of the MODWT coefficients for temporal scales ∆t  = 2, 4, 8, 16, and 32 

trials for the simple response task (upper panel) and interval estimation task (lower panel) (as in Figure 4). The 

simple response task has a less homogeneous variance compared to the interval estimation task when ∆t→0, 

arising from multiplicative interactions. (B) The cumulative probability density function (pdf) of the MODWT 

coefficients for the simple response task (upper panel) and interval estimation task (lower panel). The non-

Gaussian heavy tails of the former increase when ∆t→0 while these are invariant and approximately Gaussian 

(gray lines) for the latter. (C) The multifractal half-spectrum (i.e., 0 < q < 3 in equation (1)) for the simple 

response task (upper panel) and the interval estimation task (lower panel) estimated by the coefficients of both 

MODWT (black squares) and CWT (black circles) with the ensemble of surrogates (gray bars of ±1 standard 

deviation). 

 

The simple response task had a significantly larger multifractal spectrum width (p < 

0.01) for both the MODWT- and CWT-based computations (median 0.35 and 0.36, 

respectively) compared to the choice decision (median 0.11 and 0.19) and interval estimation 
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(median 0.06 and 0.09) tasks (see Figure 6). Furthermore, all of the 36 response series had an 

inhomogeneous variance unequal to independent, Gaussian-distributed MODWT coefficients 

according to the D-statistics (p < 0.05, see Eq. (A22) in the Appendix). This means that even 

though some of the response series have a multifractal spectrum width close to zero (see for 

example participants 3 and 5 in the short RSI interval estimation task in Figure 6C), the scale-

dependent processes were nevertheless significantly less homogeneous compared to those of 

monofractal pink noise, as exemplified in the lower panel in Figure 3A. To summarize, re-

analyzing Wagenmakers et al.’s (2004) data set using the MODWT and CWT indicated that a 

large portion of the response series is influenced by intermittent dynamics that are induced by 

interactions between their multiple time scales. The significant differences between the 

multifractal spectrum widths of the response series and their ensemble of surrogates (see 

Figure 6A-C) indicated that these interactions are not identified by the non-Gaussian 

probability density function or the 1/f α power law of the response series.  
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Figure 6: (A) The multifractal spectrum width hmax – hmin for each participant estimated by both MODWT (gray 

circles) and CWT (black triangles) coefficients in a simple response task with short (left panel) and long (right 

panel) RSI. The circles with bars are the confidence intervals of hmax – hmin for the surrogates estimated by 

MODWT (gray bars) and CWT (black bars) coefficients. (B) The same as in (A) for the choice decision task. 

(C) The same as in (A) for the interval estimation task. (D) The standard error intervals for the multifractal half-

spectrum (i.e., 0 < q < 3 in equation (1)) for simple response (black), choice decision (gray) and interval 

estimation (light gray) tasks estimated by both MODWT (upper panel) and CWT (lower panel) coefficients.  

 

Data set 2: Van Orden et al.’s (2003) data set consists of 10 and 20 response time series of a 

simple and a word naming response task, respectively. In contrast to data set 1, the simple and 

word naming response task were between-subject manipulations. In the simple response task, 

the participants were responding as fast as possible to visual stimuli (+++) by an oral response 

\ta\ collected by a voice key. The response to stimulus interval was 415 ms. In the word 

naming response task, the oral response was reading out loud a visually displayed word of 

four or five letters, where the response to stimulus interval was 629 ms. After pre-processing 

the data in which values more than 3 standard deviations from the mean were eliminated, each 

response time series contained 1024 samples. The eliminated values were mainly artifacts of 

the voice key (cf. Van Orden et al., 2003).  

 

Multiplicative interactions in data set 2: The response series of the simple response task 

showed periods of small and large variability just like the same task in data set 1. These 

periods were more distinct for the simple response task compared to the word naming task, as 

indicated by a less homogeneous wavelet variance when ∆t→0 for the simple response task. 

Subsequently, this difference was quantified by the multifractal spectrum width hmax – hmin. 

There was a non-significant trend (p = 0.068) for a larger spectrum width for the simple 

response task (median 0.31) compared to the word naming response task (median 0.16) when 

the multifractal spectrum computation was based on the MODWT coefficients (see upper 
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panel in Figure 7B), while the difference was significant (p = 0.04) when the same 

computation was based on the CWT coefficients (median 0.34 vs 0.12) (see lower panel in 

Figure 7B). The individual multifractal spectrum widths hmax – hmin together with the 95% 

confidence interval of the 30 ensembles is depicted in Figure 7A. As for data set 1, the D-

statistics indicated that all of the 30 response series had an inhomogeneous wavelet variance 

(p < 0.05) different from the homogeneous variance of monofractal pink noise (see lower 

panel of Figure 3A). To summarize, re-analyzing Van Orden et al.’s (2003) data set using the 

MODWT and CWT indicated that, similar to data set 1, the response series are influenced by 

intermittent dynamics induced by interactions between their multiple time scales. Equivalent 

to data set 1, the significant difference between the multifractal spectrum width of the 

response series and the ensemble of surrogates (p < 0.05) indicated that these interactions 

cannot be identified by the non-Gaussian distribution or the 1/f α power law of the response 

series alone.   
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Figure 7: (A) The multifractal spectrum width hmax – hmin for each participant estimated by both MODWT (gray 

circles) and CWT (black triangles) coefficients for the simple response (upper panel) and word naming (lower 

panel) tasks. The small circles and triangles with bars represent the confidence intervals of hmax – hmin for the 

surrogates estimated by wavelet coefficients of MODWT (gray bars) and CWT (black bars). (B) The standard 

error intervals for the multifractal half-spectrum (i.e., 0 < q < 3 in equation (1)) for simple response (black) and 

word naming (gray) tasks estimated by both MODWT (upper panel) and CWT (lower panel) coefficients.  

 

Discussion: In the present re-analysis of the data sets of Wagenmakers et al. (2004) and Van 

Orden et al. (2003), the strongest influence of multiplicative interactions (i.e., multifractal 

spectrum width) was present in the simple response tasks of both data sets. This might be due 

to their common task instruction “respond as fast as possible to the stimulus”. This instruction 

leads to consistent laminar periods with fast response times and little variability, while the 

intermittent bursts are skewed towards slow response times where the burst size is constrained 

by the upper time limit set by the experiment. Although this task has no ambiguity in either 

stimulus, response or instruction, its simplicity nevertheless leads to a larger difference 

between laminar periods of fast response times and intermittent periods of slow response 

times, in which the participants’ attention to the stimulus or commitment to the experiment is 

waning. Furthermore, a large increase in response times is likely to induce a subsequent 

decrease in order to stay within the time limits of the experiment. Consequently, an 

intermittent zigzag pattern reflects a relationship between the width of the local probability 

density function and the local regularity (i.e., local h exponent) of the response series that are 

both implicit to a multifractal response pattern (see Figure A2 in the Appendix for the 

mathematical details).   

In the interval estimation task, the internal cognitive representation of 1 second defines 

the performance variability (e.g., Gilden, 2001; Gilden et al., 1995; Wing & Kristofferson, 

1973). The present re-analysis shows that this representation yields a decrease in the 



Beyond 1/f α fluctuation - 30 

 

multifractal spectrum width and, thus, less pronounced intermittent periods of large response 

time variability. An interesting difference between the instructions of the simple response task 

and the interval estimation task was that the latter contained a specification of the response 

duration “1 second”. This specification may have decreased the influence of intermittent 

bursts of large variability by the overriding influence of the time metrics set by the 

experimental setup. Thus, there is less probability of sudden large increases in the time 

estimation and, consequently, a less pronounced irregular zigzag pattern seen in the interval 

estimation task. This difference is confirmed by stronger long-range correlations (i.e., more 

regularity) in the interval estimation task compared to the simple response task 

(Wagenmakers et al., 2004). Even though some of the response series in the interval 

estimation task were approximately monofractal (see lower panel of Figure 5C), the 

distribution of the wavelet coefficients was nevertheless inhomogeneous (see lower panel in 

Figure 5A). This indicates that the multiplicative interaction between temporal scales was not 

scale invariant and that some of the response series in the interval estimation task were neither 

multifractal nor monofractal (i.e., 1/f α noise). This point is discussed further in the third 

concluding remark at the end of the Appendix.  

It has previously been suggested that both choice decision tasks and word naming tasks 

increase the memory work load of the cognitive system. Clayton and Frey (1997), for 

example, reported that regularity decreased towards uncorrelated fluctuation of the response 

series when the number of choices increased. This finding was later replicated by Ward 

(2002). Van Orden et al. (2003) showed that the response time fluctuation in word naming 

response tasks has a less correlated structure compared to the simple response task, whereas 

Wagenmakers et al. (2004) did not find such differences in the 1/f α power law between the 

simple response task and the choice decision task. The present results suggest that an increase 

in memory workload suppresses the waning of attention and thereby the coordination between 
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the multiple time scales of the response series. This suppression leads to a decrease in the 

multifractal spectrum width for both the choice decision and the word naming tasks compared 

to the simple response task. The suppression might have been caused by the duality of the oral 

instruction to “respond as fast as possible to the stimuli without error”, resulting in a speed-

accuracy trade-off between “respond as fast as possible” and “respond without error” to the 

stimuli. The addition of an accuracy instruction increased the variability in the laminar 

periods in the response series compared to the simple response task and, consequently, 

decreased the difference between the laminar and intermittent periods (i.e., a decrease in the 

multifractal spectrum width). This suggestion is supported by a less pronounced right tail of 

the non-Gaussian probability density function of the choice decision task compared to the 

simple response task in data set 1.   

To summarize, the emergent periods of intermittent variability in both data sets were 

shown to originate from multiplicative interactions, as indicated by the significant difference 

between the multifractal spectrum width of the response series and their surrogates. The 

influence of these interactions was shown to be dependent on the task constraints, with the 

simple response task in both data sets displaying the most pronounced multiplicative 

interaction. These results indicate that there is a major influence of interactions across 

multiple time scales in cognitive performance, and illustrate the limitations of using the 1/f α 

power law to quantify interaction-dominant dynamics in cognitive performance.   

 

Component- versus interaction-dominant models of cognitive performance 

 

The section above provided quantitative support for the presence of multiplicative 

interactions between temporal scales in cognitive tasks. These interactions have previously 

been equated to the omnipresence of 1/f α fluctuations in cognitive performance (Kello et al., 
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2007, 2008; Van Orden et al., 2002, 2003, 2005). As illustrated in the present paper, there is a 

fundamental deficit in this view because α and related exponents are blind to the presence of 

multiplicative interactions between scales (see the Appendix for the mathematical details of 

this claim). In other words, 1/f α fluctuation in cognitive performance can be caused by both 

component-dominant dynamics (Wagenmakers et al., 2004, 2005) and interaction-dominant 

dynamics (Kello et al., 2007, 2008; Van Orden et al., 2002, 2003, 2005). In this section, we 

will test the ability of two frequently used component-dominant models and the presently 

introduced multiplicative cascading process to reproduce the multiplicative interactions 

between temporal scales in the response series of data sets 1 and 2.    

 

Response series = 1/f α fluctuation + white noise: The literature on cognitive dynamical 

systems has suggested that cognitive performance can be described as a generic superposition 

of 1/f α fluctuation and white noise, leading to a flattening of the log-Fourier spectrum at high 

frequencies (e.g., Gilden, 2001; Wagenmakers et al., 2004; Ward, 2002). This suggestion was 

first introduced by Gilden et al. (1995) for an interval estimation task, in which the 1/f α 

fluctuation was considered to be the generic property of the cognitive system while the 

(differentiated) white noise was caused by motor error corrections (e.g., Wing & 

Kristofferson, 1973) or priming effects (cf. Gilden, 2001). To test the hypothesis that 

cognitive performance can be exclusively defined by this model, 1000 simulated series were 

generated with a Fourier spectrum identical to each response series. This generation was 

obtained by randomizing the phases of the fast Fourier transformation but preserving the 

ordering of the amplitude. This resulted in a Fourier spectrum identical to the original 

response series and therefore a perfectly fitted 1/f α fluctuation + white noise model as used in 

the studies cited above. The simulated series were then decomposed by the MODWT and the 

D-statistics was employed for the scales ∆t = 2, 4, 8, 16, and 32 trials to compare the wavelet 
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variances. In addition, a CWT-based estimation of the multifractal spectrum width (hmax – 

hmin) was computed for each simulated series and compared to the results of the response 

series of datasets 1 and 2.  

Starting with the inhomogeneous wavelet variance, the 1/f α fluctuation + white noise 

simulated series were able to replicate this for only 1 of the 12 response series in the interval 

estimation task (participant 3, short RSI) and for none of the response series in the choice 

decision and simple response tasks of data set 1 (p < 0.05, see Eq. (A22) in the Appendix). 

For data set 2, the simulated series were able to replicate only 2 out of 10 response series in 

the simple response task (participants 5 and 9) and 4 out of 20 response series in the word 

naming task (participants 1, 7, 12, and 13). The inability to replicate inhomogeneous wavelet 

variance was most apparent for the smallest temporal scales ∆t = 2, 4, and 8 trials, that are 

assumed to contain the priming effects or motor error correction terms (cf. Gilden, 2001; 

Gilden et al. 1995; Thornton & Gilden, 2005).  

As for the mean multifractal spectrum widths, Figure 8 shows that these were close to 

zero for all simulated series, indicating that the 1/f α fluctuation + white noise model is not 

able to replicate the multiplicative interactions that are present in the response series. In the 

simple response task of data set 1, all simulated series had significantly narrower multifractal 

spectrum widths compared to the original response series (p < 0.05). In the choice decision 

task, 3 out of 12 response series (participant 2, short RSI, and participants 2 and 3, long RSI) 

had spectrum widths equal to the model, while this was the case for 5 out of 12 response 

series in the interval estimation task (participants 1, 3, 4, and 5, short RSI, and participant 2, 

long RSI). In dataset 2, 2 out of 10 response series in the simple response task (participant 5 

and 9) and 5 out of 20 response series in the word naming task (participants 1, 3, 6, 9, and 11) 

had equal multifractal spectrum widths.  
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Combining both tests, only 4 out of 66 response series had both equal homogeneous 

wavelet variance and equal multifractal spectrum width as the 1/f α fluctuation + white noise 

model, indicating that this model is unable to replicate multiplicative interactions between the 

temporal scales in the response series of several cognitive tasks.     
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Figure 8: The multifractal spectrum width hmax – hmin for the response series (black dots) in the simple response, 

choice decision, and interval estimation tasks of dataset 1 with short and long RSI, and in the simple response 

and word naming tasks of dataset 2. The mean (gray triangles) and ± 1 standard deviation is displayed for 1000 

simulated series of the superposition of 1/f α fluctuation and white noise. 

 

Response series = AR∆t=100+AR∆t=10+AR∆t=1+ white noise: The 1/f α fluctuation in the model 

in the previous section can be further decomposed into an aggregated sum of autoregressive 

(AR) processes yielding 1/f α fluctuation = AR∆t=100+AR∆t=10+AR∆t=1, where the subscripts are 

hypothesized to define the temporal scales (∆t) for the consciousness, sub-consciousness, and 
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unconsciousness processes, respectively3. This aggregated AR model was decomposed into 

wavelet coefficients at scales ∆t = 2, 4, 8, 16, and 32 trials before the D-statistics were 

applied.  

Starting again with the inhomogeneous wavelet variance in data set 1, only 1 out of 12 

response series in the interval estimation task (participant 3, short RSI) and none of the 

response series in the simple response and choice decision tasks had equal inhomogeneous 

wavelet variance as the aggregated AR model (p < 0.05, see Eq. (A22) in the Appendix). In 

data set 2, this was the case for 2 out of 10 response series in the simple response task 

(participants 5 and 9) and 5 out of 20 response series in the word naming response task 

(participants 1, 2, 12, 13, and 18). The difference between the distribution of the wavelet 

coefficients of the models and the response series was largest for the three smallest temporal 

scales ∆t = 2, 4, and 8 trials, where the presence of interaction-dominant dynamics was more 

pronounced.  

With respect to the multifractal spectrum widths in data set 1, the aggregated AR model 

was not able to reproduce the width of any of the 12 response series in the simple response 

task (p < 0.05), while the width was replicated for 6 out of 12 response series in the choice 

decision task (participants 2, 4, and 6, short RSI, and participants 2, 3, and 6, long RSI) and 6 

out of 12 response series in the interval estimation task (participants 1, 3, 4, and 5, short RSI, 

and participants 5 and 6, long RSI). In data set 2, the aggregated autoregressive model was 

able to reproduce the multifractal spectrum widths for 2 out of 10 response series in the 

simple response task (participants 5 and 9), and 7 out of 20 response series in the word 

naming task (participants 1, 2, 3, 6, 9, 11, and 18). Similar to the fluctuation + white noise 

model in Figure 8, the aggregated AR model was unable to replicate the multifractal structure 

of the response series.  

                                                 
3 See Chapter 16 in Ward (2002) for the formal definition of this model.  
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According to both tests combined, only 5 out of 66 response series in data set 1 and 2 

had equal homogenous wavelet coefficients and multifractal spectrum widths as the 

aggregated AR model. In summary, both 1/f α fluctuation + white noise and the aggregated 

AR model were unable to replicate multiplicative interactions between temporal scales in the 

response series of several cognitive tasks.  

 

Response series as a multiplicative cascading process: The multiplicative cascading process 

illustrated in the upper panels of Figure 3 (and in Figures A1-A3 in the Appendix) is a 

multiplicative generalization of the additive models tested above. This means that we are 

moving from the component-dominant models above where the response series is assumed to 

be decomposable into independent time scales, to an interaction-dominant model where the 

time scales are interacting. The parameters of the multiplicative cascading process were the 

center tendency and width hmax – hmin of the multifractal spectrum defined by the MODWT- 

and CWT-based estimations of the response series (see the Appendix for further mathematical 

details). The multiplicative cascading process was then decomposed into wavelet coefficients 

at scales ∆t = 2, 4, 8, 16, and 32 trials before the D-statistics were applied. As the multifractal 

spectrum width is one of the parameters of the multiplicative cascading process, the spectrum 

widths were not compared to the response series. 

The inhomogeneous wavelet variance was replicated by the multiplicative cascading 

process in 11 out of 12 response series in the simple response task (all except participant 1, 

long RSI), in 10 out of 12 response series in the choice decision task (all except participants 2 

and 6, long RSI) and in 9 out of 12 response series in the interval estimation task (all except 

participants 3, 4, and 5, short RSI) of data set 1 (p < 0.05, see Eq. (A22) in the Appendix). In 

data set 2, the inhomogeneous wavelet variance was replicated in 9 out of 10 response series 

in the simple response task (all except participant 7), and in 18 out of 20 response series in the 
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word naming response task (all except participants 11 and 14). The multifractal structure of 

the multiplicative cascading process was able to replicate the intermittent periods of large 

wavelet variance in the response series especially for the three smallest temporal scales ∆t = 

2, 4, and 8 trials. 

All in all, the multiplicative cascade process was able to replicate the scale-dependent 

variance in 57 out of 66 response series, indicating that it is a more suitable model of 

cognitive performance than the component-dominant models above. As illustrated in the 

upper panel of Figure 3B, the multiplicative cascading process is able to induce heavy tails in 

the wavelet coefficients especially at the smallest temporal scales ∆t = 2, 4, and 8 trials, where 

the component-dominant models break down.  

 

Discussion: The present paper has introduced an interaction-dominant model called a 

multiplicative cascading process for modeling the interactions across the multiple time scales 

of cognitive performance. The mathematical implication of the presence of multiplicative 

interactions in response series is that the fundamental assumption of the existence of mutually 

independent time scales breaks down. This means that the fundamental assumption of 

independent oscillations of the Fourier decomposition is violated, as are the corresponding 

labels of encapsulated cognitive constructs as independent levels of mental sets or 

consciousness (e.g., Gilden, 2001; Ward, 2002). Furthermore, the present results suggest that 

the white noise flattening of the Fourier spectrum is a consequence of interactions between 

the multiple time scales of the cognitive system rather than of superimposed motor error 

corrections or priming effects as previously suggested (Gilden, 2001; Wing & Kristofferson, 

1973). The intermittency of the multiplicative cascading process induces transient periods of 

large response variability that have an irregular structure, i.e., a zigzag pattern with large 

amplitude and high frequency. In response series of finite size, these intermittent periods will 
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induce a flattening of the spectrum that is dependent on the width of the multifractal 

spectrum. This relationship was confirmed in both data set 1 and data set 2, with the simple 

response task having the most pronounced flattening at higher frequencies and the largest 

multifractal spectrum width. In addition, superimposed white noise on 1/f α fluctuation (or 

aggregated autoregressive processes) is approximately Gaussian distributed while the 

distributions of the response series have a heavy right tail that originates from the intermittent 

periods of large performance variability. Finally, the replication of the Fourier spectrum leads 

to homogenous wavelet variance at all temporal scales in the 1/f α fluctuation + white noise 

model, which was seen in only 4 of the 66 response series. In contrast to the component-

dominant models, the present model of human cognition as a multiplicative cascading process 

defines the flattening region in the Fourier spectrum as part of the integrated whole of the 

cognitive system rather than as superimposed priming effects (e.g., Gilden, 2001) or motor 

error corrections (e.g., Gilden et al., 1995; Wing & Kristoffersen, 1973) that can be filtered 

out or subtracted from the cognitive dynamics. In summary, our results indicate that the 

transient, intermittent, incoherent and emergent behavior of the cognitive system results from 

the interactions between multiple time scales rather than from a superposition of encapsulated 

and non-interacting cognitive components. 

 

Interaction-dominant dynamics in the human nervous system 

 

The current application of multifractal analyses and corresponding multiplicative 

cascading processes to response series provides support for the interaction-dominant 

perspective on human cognition as a coherent whole characterized by interacting time scales. 

An alternative theoretical framework to capture interaction-dominant dynamics was recently 

suggested by Van Orden et al. (2003, 2005) and later Kello et al. (2007) and Holden et al. 
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(2009). Within this framework, 1/f α power laws and non-Gaussian probability density 

functions in response series are hypothesized to be common features of the human nervous 

system and behavior in a so-called self-organized critical state (Bak, 1996; Bak, Tang, & 

Wiesenfeld, 1987; Jensen, 1998). A self-organized critical system is driven by external 

injections of energy, mass, or information that is subsequently dissipated according to local 

interaction principles between the components of the system. In a critical state, the dissipation 

of energy, mass, or information is not constrained to the local sites of neighboring 

components but is present on all spatial scales. So far, this interaction-dominant framework 

has not quantified how this state of the human nervous system and behavior can be linked to 

the interactions between the temporal scales of cognitive function (e.g., Wagenmakers, 2005). 

In the physics literature, however, several models of self-organized criticality of the nervous 

system have recently been suggested, such as self-organized branching models (Beggs & 

Plenz, 2003; Juanico, Monterola, & Saloma, 2007; Lauritsen, Zapperi, & Stanley, 1996; Poil, 

van Ooyen, & Linkenkaer-Hansen, 2008; Zapperi, Lauritsen, & Stanley, 1995) and self-

organized integrate-and-fire models (da Silva, Papa, & de Souza, 1998; Kinouchi, & Copelli, 

2006; Levina, Herrmann, & Geisel, 2007; Usher, Stemmler, & Olami, 1995). Common for 

these models is a local threshold dynamics between adjacent neurons that leads to a 

dissipation of external or afferent stimuli across multiple spatial scales of the nervous system. 

When the nervous system is in a critical state, the dissipation is intermittent and consists of 

both local and global conduction paths of neural activity for any given stimulus. This 

intermittent spatial dissipation is analogous to the intermittent response time variability seen 

in the multiplicative cascading process and defines the sensitivity and adaptability of the 

cognitive system to external perturbations. Consequently, in both self-organized critical 

models and multiplicative cascading processes, global coordinated dynamics of the whole 

cognitive system emerge spontaneously through its local dynamics.  
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In this last part of the results, the multiplicative interactions between the temporal 

scales of cognitive performance are linked to the suggested interaction-dominant dynamics in 

the nervous system. This is obtained by comparing the multifractal spectrum widths hmax – 

hmin of the output of a self-organized branching process developed by Zapperi and colleagues 

(1995), with the spectrum widths of the response series. We will then extend the 

multiplicative cascading process to the spatial domain of the human nervous system to 

illustrate the similarity with the self-organizing branching process.  

       

Self-organizing branching process: The self-organizing branching process was defined in a 

neural network of 100 000 neurons where each neuron or site can be in a silent or potentiated 

state (Zapperi et al., 1995). When a neuron is stimulated, it converts from a silent to a 

potentiated state or from a potentiated to an active state. A neuron in the active state 

redistributes its stimulation to two randomly chosen nearest neighbors and then settles in a 

silent state. If a neighbor neuron is in a potentiated state, it also redistributes its stimulation so 

that conduction paths of action potentials are branching across the network. In contrast, if the 

neighbor neuron is in a silent state it is potentiated, but the conduction of the action potential 

to subsequent neighbors stops. The probability for these two conditions is given by the critical 

branching parameter p (Zapperi et al., 1995). If p < 0.5 there is a larger probability for the 

branching of the action potential to hit silent neurons and stop (see upper panel in Figure 9). 

In this sub-critical state, the number of active neurons will decrease as they redistribute their 

stimulation to their neighbors. The total number of neurons contributing to the conduction of 

action potentials will be small such that the neural interactions remain local in the nervous 

system (see upper panel in Figure 9).  If p > 0.5 there is a larger probability for the branching 

of the action potential to hit potentiated neurons and branching further across the neural 

network. In this super-critical state, the number of active neurons will increase such that the 
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total number of active neurons will be high and the neural interactions will be global (see 

bottom panel in Figure 9). The critical state p = 0.5 is the borderline between these scenarios 

where the interactions are both local and global in the nervous system, leading to intermittent 

dissipation that makes the nervous system more adaptive to a given external stimulus. In other 

words, any given stimulation can give rise to both local and global neural interactions (see the 

middle panel of Figure 9).  
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Figure 9: The time series of number of active neurons in a random network with a self-organized branching 

process for sub-critical (upper panel), critical (middle panel) and super-critical (lower panel) branching 

parameter p. (Upper panels) In the sub-critical state (p = 0.495), external stimulation leads to local activity only, 

as reflected in the small number of active neurons in the neural network. In this state, external stimuli are 

inhibited. (Middle panels) In the critical state (p = 0.5), there is both local and global activity yielding 

intermittent dissipation of external stimulation. In other words, external stimuli are both inhibited and 

propagated. This provides an intermittent mixture of both small and large numbers of active neurons in the 

neural network. (Lower panel) In the super-critical state (p = 0.505), there is mainly global activity apparent in 
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the build up of hills of a large number of active neurons as the external stimulation is branching across a large 

portion of the network. In this state, external stimuli are propagated. After the redistribution of external stimuli 

has branched across the network, the neural activity drops to the zero baseline before a new global branching is 

initiated. 

 

We simulated 100 time series with 1024 data points of number of active neurons in the 

neural network for the self-organized branching process with the control parameter p in a 

close range of the critical point p = 0.5, ranging from the sub-critical state p = 0.485 to the 

super-critical state p = 0.515. Subsequently, we calculated the multifractal spectrum width 

hmax – hmin for the synthesized time series where hmax – hmin was validated by an ensemble of 

30 surrogate series (see ‘Validation of multiplicative interactions’ in the method section).  

The number of active neurons in the self-organizing branching process at each time 

instant shows an increase in intermittent structure going from a sub-critical to a super-critical 

state in the vicinity of p = 0.5. This change in structure is closely related to a sudden increase 

in the multifractal spectrum width around p = 0.5 where the process enters the super-critical 

domain (see upper panel of Figure 10). In the super-critical domain, there are mainly large, 

global conductions of neural activity reflecting the intermittent periods of global activity and, 

thus, large multifractal spectrum width. In contrast, in the sub-critical domain the activations 

are small and localized, causing more homogeneous variability in the activation and therefore 

a narrow multifractal spectrum width. Interestingly, when comparing the results of 100 

synthesized series of the self-organized branching process for each parameter p, a larger 

standard deviation of the multifractal spectrum width was observed for the critical state  p = 

0.5 (see lower panel of Figure 10). Furthermore, the multifractal spectrum width of the 66 

response series in data sets 1 and 2 were within 2 standard deviations of the critical state p = 

0.5 (see lower panel of Figure 10). This indicates that in the critical state a more diverse range 

of neural activity appears, reflected as intermittent structure in the response series, that 
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provides the organism with the flexibility to adapt to changes in the environment. In 

summary, the present results provide quantitative support that the cognitive system might live 

in a close range around its critical point where it can adapt to small differences in external 

stimuli, which would not be possible in the sub-critical or super-critical domain alone. 
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Figure 10:  (Upper panel) The multifractal spectrum width hmax – hmin for the time series of the number of active 

neurons in a self-organized branching process with the branching parameter between 0.485 and 0.515 (black 

trace). The activity pattern shifts from an approximately monofractal to a multifractal structure around the 

critical point p = 0.5. In the critical and super-critical state, the self-organized branching process has significant 

influence of multiplicative interactions across temporal scales as indicated by the significant difference with the 

ensemble of surrogates (gray error bars). (Lower panel) The standard deviation of the multifractal spectrum 

width hmax – hmin for 100 realizations of a self-organized branching processes. The standard deviation is larger 

around the critical state p = 0.5 where the multifractal spectrum width of the response series lies within ±2 

standard deviations of the critical state (indicated by the height of the box).  
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Neural activity as a multiplicative cascading process: The intermittent dissipation of external 

stimulation of the self-organizing branching process implies an inhomogeneous distribution of 

neural activity as observed in fMRI recordings in rest and during cognitive tasks (e.g., Liu, 

Liao, Fang, Chu, & Tan, 2004; Menon, Luknowsky, & Gati, 1998; Richter, Ugurbil, 

Georgopoulos, & Kim, 1997). This inhomogeneous distribution can be modeled by extending 

a multiplicative cascading process to multiplicative interactions between spatial scales 

(Chainais, 2006). In this extension, the scale ∆x is the diameter of a shrinking sphere centered 

at the spatial coordinate x within the neural network (see Figure 11) rather than the diameter 

∆t of the cone in Figure 1B. When the product of interaction multipliers within the shrinking 

sphere of Figure 11 is large, there is globally coordinated neural activity within this sub-

volume of the nervous system where the activity spreads across multiple spatial scales. In 

contrast, if the cumulative product of multipliers within the shrinking sphere is small, there is 

a sub-volume of local neural activity. Figure 12, upper panel, represents the simulation of a 

multiplicative cascading process in three spatial dimensions that contains 125 000 sites. The 

blue to red color spectrum defines the level of activity, and the width of sheets the gradient 

spread of activity. The upper panel shows that interactions across multiple spatial scales form 

intermittent regions of high activity indicated by extended and interconnected red and yellow 

regions (i.e., global coordinated structures), and laminar regions of local small activity 
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defined by small blue sheets. 

 

Figure 11: Construction of a three dimensional extension of a multiplicative cascading process, defined by 

extending the cone in Figure 1B to a shrinking sphere. The shrinking sphere defines the spatial scale ∆x as its 

diameter, analogous to the temporal scale ∆t for the cone in Figure 1B. This sphere is translated across the three 

spatial dimensions, with its center x (indicated by the gray ‘x’ in the center) being analogous to the tip t of the 

cone in Figure 1B. 
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Figure 12: (Upper panel) A multiplicative cascading process of neural activation illustrating the presence of 

multiplicative interactions across spatial scales of the human nervous system. The extended red and yellow 

sheets illustrate the neural clusters with large and global activity, while the patchy blue sheets illustrate the 

clusters with little and local activity. A complex and intermittent structure of neural activation emerges from 

neural interaction and coordination across multiple spatial scales. (Lower panel) A surrogate generated by the 

iterated amplitude-adjusted three-dimensional Fourier transformation of the multiplicative cascading process in 

the upper panel. Although both the 1/f α scaling relation and non-Gaussian distribution of the neural activity are 

preserved, the multiplicative interactions between the spatial scales are eliminated. The lack of coordination and 

interaction between the spatial scales of the neural network generates small blue sheets of local activity similar to 

the sub-critical domain of the self-organized branching process in the upper panel of Figure 9. 

 

By generating a surrogate of the multiplicative cascading process (see ‘Validation of 

multiplicative interactions’ in the method section) that replicates both the non-Gaussian 

distribution and monofractal structure (i.e., 1/f α power law), it is possible to illustrate the 

influence of neural interactions across spatial scales. The bottom panel in Figure 12 illustrates 

that when no interactions are present between spatial scales of the nervous system, only local 

neural activity is present (small blue sheets of activity across the entire network) without 

clusters of global coordinated activity as seen in the upper panel. In this monofractal case, no 

interactions across global ranges in the nervous system emerge, which is the equivalent to the 

sub-critical domain in the upper panel of Figure 10 of the self-organized branching process.  

In summary, the present comparison of a self-organizing branching process and a 

multiplicative cascading process indicates that global coordinated neural activity can be 

generated by the intermittent dissipation of external stimulation across the multiple spatial 

scales of the nervous system. Thus, the self-organization of active neural clusters within the 

human nervous system and the self-assembly of intermittent variability seen in the response 

series may be closely related through interactions across multiple scales in both time and 

space.   
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Discussion: The present results indicate that multifractal fluctuations in the response series 

might be linked to multifractal neural activation within the human nervous system in close 

vicinity of its critical state. However, this comparison between interaction-dominant dynamics 

in response series and a self-organized branching process in the nervous system is based on 

modeling only, and physiological measurements of neural activation are necessary to validate 

the presence of intermittent distributed neural activity during cognitive tasks. Recent studies 

confirm that alpha oscillations in EEG and MEG recordings of the human cortex display 

intermittent periods of large amplitudes with similar pattern as the output of the self-organized 

branching process (Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001; Linkenkaer-

Hansen, Nikulin, Palva, Kaila, & Ilmoniemi, 2004; Poil et al., 2008). The present results on a 

self-organized branching process also indicate that neural activity in the nervous system and 

the behavioral output might be linked through their intermittent and multifractal structure. 

Thus, further studies are needed to investigate the correlation between the multifractal 

structure of the oscillation amplitudes in EEG and MEG and interactions across multiple time 

scales of cognitive performance.  

Recently, a complex systems theory has been introduced in physics that compares and 

integrates multiplicative cascading processes and self-organized critical models (e.g., Bak, & 

Paczuski, 2005; Katsuragi et al.,, 2003; Sinha-Ray, de Agua, & Jensen, 2001; Sreenivasan, 

Bershadskii, & Niemela, 2004; Tebali, De Menech, & Stella, 1999; Uritsky, Paczuski, Davila, 

& Jones, 2007). Although this theory can distinguish multiplicative cascading processes and 

self-organized critical models in the limits of infinitely long time series (Boffetta, Carbone, 

Giuliani, Veltri, & Vulpiani, 1999), this distinction is not yet possible in the investigation of 

finite sized measurements, as in the case of human brain and behavior. Therefore, an 

integrated interaction-dominant theory of both self-organized criticality and multiplicative 
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cascading processes might be a promising way for future investigations of human cognition 

and behavior. Furthermore, several studies in solar physics show that self-organized criticality 

can develop a scale-free, fractal architecture of complex networks (Paczuski, & Hughes, 

2004). Complex networks with scale-free, fractal structures are reported to be more robust to 

context-induced perturbations and have enhanced speed of energy and information 

propagation (Albert, Jeong, & Barabasi, 2000; Barabasi, & Albert, 1999; Song, Havlin, & 

Makse, 2006). A promising extension of the present study would be to apply these theories of 

complex networks to the architecture and functioning of the human brain. 

 

Conclusion 

 

 The present study provided quantitative support for a paradigm shift towards 

interaction-dominant dynamics of human cognition by equating the latter with multiplicative 

interactions across the temporal scales of cognitive performance and the spatial scales of the 

human nervous system. The wavelet-based multifractal analysis was able to parameterize 

these multiplicative interactions in the performance of several cognitive tasks, caused by 

changes in attention to the stimulus or intention to comply with the experimental instructions. 

These multiplicative interactions between temporal scales in the response series 

fundamentally advance both what can be quantified and how to understand the basis of human 

behavior. The influence of the multiplicative interactions was quantified by the multifractal 

spectrum width, which in turn was shown to be dependent on the interrelation between the 

task instruction and the changes in attention to the stimulus or intention to comply. 

Furthermore, only the presently introduced multiplicative cascading process was able to 

model the intermittent fluctuations in the response series by incorporating the multiplicative 

interactions between temporal scales. Component-dominant models like ‘1/f α fluctuation + 
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white noise’ and ‘aggregated AR processes’ were unable to replicate the presence of 

multiplicative interactions, indicating that cognitive performance cannot be decomposed into 

independent cognitive categories like mental sets, level of consciousness, motor error 

corrections, or priming effects, as previously suggested in the literature (Gilden, 2001; Ward, 

2002). The influence of the multiplicative interactions in the response series was shown to be 

closely related to the self-assembly of neural activity within the human nervous system, as 

defined by a self-organized branching process. The latter shared the same characteristics as a 

spatial extension of a multiplicative cascading process. These preliminary results illustrate a 

close relationship between the interactions across the temporal scales of cognitive 

performance and neural interactions across the spatial scales of the human nervous system. 

The present paper therefore points towards the possibility of a coherent theory for interaction-

dominant dynamics in the human brain and behavior.  
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Appendix 

 

Symbols and abbreviations 

t  Time (Euclidian time) 

x  Space (Euclidian space) 

∆t  Temporal scale 

∆x  Spatial scale 

1/f  Inverse frequency, the same as scale ∆t 

∆t→0  When the time scale goes to zero 

A(t)  Multifractal time 

A(x)  Multifractal space 

dA(t)  Increments in multifractal time 

BH(t)  Fractional Brownian motion or monofractal random walk   

BH(A(t)) Multifractal random walk 

∆BH(t)  Fractional Gaussian noise   

∆BH(A(t)) Multiplicative cascading process 

C∆t(t)  A cone in the time-scale plane 

D(h)  The multifractal spectrum 

G(H lnM) The probability density function of H lnM 

H lnM   The logarithm of the interaction multipliers as a power law of the Hurst 

exponent (i.e., H lnM = lnMH ) 

H  Hurst exponent 

h  Singularity exponent 

hmax – hmin Multifractal spectrum width 

M∆t(t)  Interaction multipliers  
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m∆t(q)  The q-order statistical moment of the wavelet coefficients W∆t(t) 

P∆t(∆X) The probability density function of ∆X∆t(t) at temporal scale ∆t 

W∆t(t)  Wavelet coefficient at scale ∆t and time t 

∆X∆t(t)  Scale-dependent increments 

ζ(q)  Multiscaling exponent 

AR  Autoregressive 

CWT  Continuous Wavelet Transform 

MODWT Maximum Overlap Discrete Wavelet Transformation 

RSI  Response to Stimulus Interval 

 

Multiplicative interactions between temporal scales 

 

In the present paper, the term ‘interaction-dominant dynamics’ are equated with 

‘multiplicative interactions between temporal scales’ that generate intermittent fluctuations in 

a response series. This appendix provides the mathematical details that ‘multiplicative 

interactions between temporal scales’ imply the presence of ‘multifractality’ when the 

intermittent fluctuations are scale invariant. The mathematically less advanced reader can 

jump to the concluding remarks at the end of the section and read the implications of the 

introduced framework for the analysis of a response series. The mathematical theorems and 

proofs for this reasoning are found elsewhere (Bacry, & Muzy, 2003; Bacry, Muzy, & Delour, 

2001; Bacry, Kozhemyak, & Muzy, 2008; Muzy & Bacry, 2002; Muzy, Bacry, & 

Kozhemyak, 2006).  

 

Mathematical details: Statistically, the monofractal process of 1/f α fluctuation is defined as 

fractional Gaussian noise ∆BH(t) (Mandelbrot & van Ness, 1968). ∆BH(t) is equivalent with 
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the stationary increments of fractional Brownian motion BH(t) such that ∆BH(t) = BH(t+1) – 

BH(t). The Hurst exponent H denotes the level of regularity and is related to the 1/f α power 

law by α = 2H – 1. Thus, when 0 < H < 0.5 or -1 < α < 0 the fractional Gaussian noise ∆BH(t) 

is anti-correlated (irregular), while it is long-range correlated (regular) when 0.5 < H < 1 or 0 

< α < 1.  The scale-dependent increments ∆X∆t(t) = BH(t+∆t) – BH(t) of fractional Brownian 

motion BH(t) were shown by Mandelbrot and van Ness (1968) to relate to each other by the 

following power law: 

 

( ) ( )H
t tX t X tΔ ΔΔ = Δl l l          (A1a) 

 

where /t T= Δl is the scaling factor, and T is the coarsest scale considered. Equation (A1a) 

implies that the probability density function of the scale-dependent increments ∆X  = ∆X∆t(t) 

scales in a similar way: 

 

( ) ( )H H
t tP X P XΔ ΔΔ = Δll l          (A1b) 

 

Consequently, since fractional Gaussian noise ∆BH(t) has a Gaussian probability density 

function, so has its scale-dependent processes ∆X∆t(t). 

When multiplicative interactions between temporal scales generate intermittency in a 

response series, the fractional Gaussian noise has to be extended to a multiplicative cascading 

process (Muzy & Bacry, 2002). The multiplicative cascading process used in the present 

paper is the extension ∆BH(A(t)) = BH(A(t+1)) – BH(A(t)) of fractional Gaussian noise ∆BH(t) 

= BH(t+1) – BH(t) when it evolves over multifractal time A(t) (Mandelbrot, 1997). The 

multifractal time A(t) is the cumulative product dA(t) of interaction multipliers M∆t(t) within 
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the cone C∆t(t) integrated along the time axis when ∆t→0  (Muzy & Bacry, 2002) (see Figure 

A1): 

 

 
0

( ) lim ( )
t

A t dA t
Δ →

= ∫           (A2a) 

 

where: 

 

( , ) ( )

( ) ( )
t

t
t t C t

dA t M t
Δ

Δ
Δ ∈

= ∏          (A2b) 

 

The power law relation (A1a) between the temporal scales in the fractional Gaussian noise 

∆BH(t) is then generalized to the following equation for the multiplicative cascading process 

∆BH(A(t)): 

   

[ ]( ) ( ) ( )H
t tX t M t X tΔ ΔΔ = Δl ll   for  0 < ∆t  ≤ T    (A3a) 

 

which implies the following generalization of equation (A1b) (Castaing, Gagne, & Hopfinger, 

1990): 

 

( ) ( )( ln ) ( ln ) ( ln ) ( )H H
t T TP X G H M M P M X d H M G H M P X− −

Δ Δ = Δ = ⊗ Δ∫ l l   (A3b) 

 

Equation (A3b) states that the probability density function P∆t(∆X) of the scale-dependent 

process ∆X∆t(t) is a superposition of the probability density function ( )H H
TM P M X− − Δ  of the 

scale-dependent processes ( ) H
TX t M X−Δ = Δ  at the coarsest scale T weighted by the 
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probability density function ( ln )G H Ml of interaction multipliers. When no multiplicative 

interactions are present, ( ln )G H Ml collapses into a single point such that interaction 

multipliers are equal to the temporal scale (i.e., M = ∆t). In that case, the scaling relation 

(A1a-b) of fractional Gaussian noise is obtained as a special case of (A3a-b) when 

multifractal time coincides with Euclidian time; A(t) = t.  
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Figure A1. Illustration of the definition (A2a-b) of a multifractal time A(t). dA(t) is a cumulative product ∏ of 

the interaction multipliers M∆t(t) across cone C∆t(t) in the limit ∆t→0, as symbolized by the downward arrow. 

Multifractal time A(t) can then be defined as the integral ∫dA(t) over time t in the limit ∆t→0 by translating the 

cone C∆t(t) across the time axis.  

 

Equation (A3a-b) implies a non-Gaussian distribution of the multiplicative cascading 

process ∆BH(A(t)) such that the scaling of all q-order statistical moments has to be considered. 

The last equality of equation (A3b) states that the integral transformation can be rewritten as 
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the convolution product of the probability density function ( ln )G H Ml of interaction 

multipliers and the probability density function ( )TP XΔ  at the coarsest temporal scale T 

(Muzy & Bacry, 2002). The convolution product implies that q-order statistical moments 

m∆t(q) of probability density function P∆t(∆X) on a finer scale ∆t are defined by the following 

equation: 

 

Def

Def

( ) ( )

( ln ) ( )

( ) ( )

( ) ( )

q
t t

q
T

q
T

T

m q X P X d X

X G H M P X d X

G q X P X d X

G q m q

Δ Δ= Δ Δ Δ

= Δ ⊗ Δ Δ

= Δ Δ Δ

=

∫

∫

∫

l

l

l

%

%

        (A4) 

  

The moment-generating function ( )G ql
% is the Laplace transformation of ( ln )G H Ml  (third 

equality of equation (A4)) and relates the statistical moments m∆t(q) on scale ∆t with the 

statistical moment ( )Tm q on the coarsest scale T. If the multiplicative interactions in Figure 

A1 are scale invariant, then ( )( ) qG q ζ=l
% l  and the scaling of q-order statistical moments m∆t(q) 

below the coarsest temporal scale T  yields the following power law (Bacry & Muzy, 2002): 

 

( )( ) ( )q
t Tm q m qζ

Δ = l    for  0 < ∆t  ≤ T    (A5) 

 

ζ(q) is a spectrum of multiscaling exponents which completely defines the distribution 

( ln )G H Ml  of interaction multipliers when the multiplicative cascading process is scale 

invariant. The multifractal spectrum D(h) is mathematically related to the spectrum of 
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multiscaling exponents ζ(q) through the Legendre transformation defined in equation (2) in 

the Methods section. D(h) is the spectrum of dimensions 0 < D(h) < 1 of the multifractal time 

A(t) which collapses into the Euclidian time dimension D(h) = 1 when A(t) = t. In this special 

monofractal case, ζ(q) = qH is a linear function of q and the multiplicative cascading process 

∆BH(A(t)) reduces to fractional Gaussian noise ∆BH(t). In the present paper, the multiplicative 

cascading process was defined with a log-normal probability density function ( ln )G H Ml  of 

interaction multipliers, which yields (see Figure A2): 

 

( )2
2

ln
2

2

1( ln )
2

H M

G H M e σ

πσ

−
=l         (A6) 

 

such that the spectrum of multiscaling exponents ζ(q) are given by: 

 

2 2
2( ) ( )

2 2
q qH qH qHσ σζ = + −         (A7) 

 

This particular multiplicative cascading process ∆BH(A(t)) was chosen since it is one of the 

most extensively investigated cascades in the literature (e.g., Arneodo, Manneville, & Muzy, 

1998; Bacry, & Muzy, 2003; Bacry et al., 2001; Bacry et al., 2008; Muzy & Bacry, 2002; 

Muzy et al., 2006). The difference in intermittent fluctuations between a log-normal cascading 

process ∆BH(A(t)) with σ = 0.7 and H = 1 and fractional Gaussian noise ∆BH(t) (i.e., pink 

noise) with σ = 0 and H = 1 is illustrated in Figure A3 together with Figure 3 in the Methods 

section.   
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Figure A2: A summary of multiplicative cascading process ∆B(A(t)). The lower left panel illustrates the 

distribution G(H lnM) of interaction multipliers assumed to be Gaussian (see equation (A6)). Through equations 

(A7) and (2), the width σ of G(H lnM) is related to the multifractal spectrum width hmax – hmin, as illustrated in 

the lower right panel. The width of local distribution Pt(∆B) (middle panel) of ∆B(A(t)) (upper panel) is 

dependent on whether the interaction multipliers of equation (A2b) are drawn from the left tail of G(H lnM) (i.e., 

small product of equation (A2b), left arrow) or the right tail (i.e., large product of equation (A2b), right arrow). 

Thus, the differences in the width of Pt(∆B) of the laminar and intermittent periods of large and small variability 

is dependent on the width σ of G(H lnM) or, equivalently, the multifractal spectrum width hmax – hmin.     
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Figure A3. Illustration of the differences between multifractal time A(t) and Euclidian time A(t) = t for the 

multiplicative cascading process ∆BH(A(t)) with H = 1 (upper trace) and pink noise ∆BH(t) also with H = 1 

(lower trace). Periods of small and large variability emerge in a multiplicative cascading process ∆BH(A(t)) by 

deviation between multifractal time A(t) and time t (arrows). These periods are not present in the special case of 

pink noise ∆BH(t) where A(t) = t. 

 

Concluding remarks: The mathematical reasoning above leads to several important remarks in 

the multifractal analysis and modeling of cognitive performance.   

First, the identification of an α or H exponent of a response series cannot distinguish 

between an underlying multiplicative cascading process ∆BH(A(t)) and fractional Gaussian 

noise ∆BH(t). This illustrates why methods like power spectrum analysis, detrended 

fluctuation analysis, rescaled range analysis, dispersion analysis and scale window variance 

analysis are blind to the interaction-generated structure of A(t) and yield false positive results 
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in favor of a component-generated structure similar to ∆BH(t). Consequently, the presence of 

intermittent or emerging response patterns caused by coordination between multiple time 

scales cannot be identified through a single α or H exponents. The intermittent periods of 

large performance variability generated by the multiplicative interactions between temporal 

scales of ∆BH(A(t)) are captured through the multifractal spectrum D(h) instead.  

Second, the multiplicative cascading process ∆BH(A(t)) is stationary (i.e., time 

independent) like fractional Gaussian noise ∆BH(t). This is an extraordinary feature since both 

the local probability density function and regularity of ∆BH(A(t)) are time dependent (see 

Figure A3). The stationarity of ∆BH(A(t)) arises from the interrelation between its local 

amplitude and regularity. This means that large increments in ∆BH(A(t)) are counteracted by a 

large decrement that leads to intermittent periods of irregular fluctuations (i.e., a zigzag 

pattern) with large amplitude. In contrast, small increments evolve more freely and are not 

counteracted by concomitant decrements such that laminar periods with small and regular 

fluctuations emerge. Thus, the multiplicative cascading process ∆BH(A(t)) becomes a suitable 

model for the emergent changes in fluctuations in response series where its stationarity arises 

from the response time limits set by the task constraints.  

 Third, the H or α exponent defines the direction of the intermittent fluctuations 

generated by A(t) in the multiplicative cascading process ∆BH(A(t)). In a cognitive task where 

the instruction “respond as fast as possible” is given, the intermittent periods of large 

performance variability will extend towards long response times since the laminar responses 

are fast. Consequently, long-range correlations (i.e., H > 0.5 or α > 0) defines the right skew 

towards periods of intermittent slow responses. In the particular case α = H = 1 for ∆BH(A(t)) 

used as example in Figures A2 and A3, almost all intermittent periods will go towards large 

response times which generates an asymmetric skew of the non-Gaussian probability density 

function (i.e., log-normal, power law probability density functions). In this particular case, the 
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structure of the multiplicative cascading process ∆BH(A(t)) is statistically equivalent to the 

structure of multifractal time A(t) (e.g., H = 1 in equations (A6) and (A7)).   

 Fourth, the multiplicative cascading process ∆BH(A(t)) defined in the present paper 

assumes that the multiplicative interactions are scale invariant. According to the integral 

(A3b), this is not a necessary assumption, as it in general yields the following non-invariant 

scaling relation (e.g., Abry et al. 2002; Chainais et al., 2005): 

 

( )( ) ( ) ( )q
t Tm q S m qζ

Δ = l   for  0 < ∆t < T    (A8) 

 

which reduces to equation (A5) when ( )( ) qG q ζ=l
% l . Consequently, the present quantitative 

framework of interaction-dominant dynamics also includes fluctuations in response series that 

are not scale invariant, as previously reported in the literature (Wagenmakers et al., 2004).  

 Fifth, in the section Interaction-dominant dynamics in the human nervous system, the 

neural activation as a multiplicative cascading process ∆BH(A(x)) is defined over multifractal 

neural space A(x). In this case, the width ∆t of the cone C∆t(t) in Figure A1 becomes the 

diameter ∆x of the shrinking sphere in the three dimensional space shown in Figure 11. Thus, 

by substituting ∆t with ∆x and time t with the vector of spatial coordinates x, the above 

mathematics can be applied. Thus, Figure 12 illustrates the difference in intermittent 

clustering of neural activity between a log-exponential cascade ∆BH(A(x)) with H = 1 and a 

surrogate generated by an iterated amplitude adjusted three dimensional Fourier 

transformation  that has equal 1/f α power law (i.e., H = 1) and non-Gaussian probability 

density but lacks the multiplicative interactions that are apparent in ∆BH(A(x)).  

Sixth, there are other processes besides the multiplicative cascading process ∆BH(A(t)) 

that generate intermittent dynamics. Processes like the Kesten process (Kesten, 1973), 

generalized autoregressive process with conditional heteroskedasticity (Bollerslev, 1986) and 
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generalized diffusion processes (Frank, 2004) have all been shown to create intermittent 

fluctuations. However, the corner stone in the multiplicative cascading process ∆BH(A(t)) is 

the ability to create intermittent fluctuations by multiplicative interactions between temporal 

scales which are not considered by the other models.  

 

Wavelet-based multifractal analysis 

 

To define the presence of multiplicative interactions in a response series, the spectrum 

of multiscale exponents ζ(q) or multifractal spectrum D(h) has to be computed from the 

response series. The mathematical definition of a multiplicative cascading process ∆BH(A(t)) 

implies that the relationship between scale-dependent processes ∆X∆t(t) equals the relationship 

between wavelet coefficients W∆t(t) such that ∆X∆t(t) = W∆t(t) in equation (A3b). In the 

present section, two algorithms for the definition of wavelet coefficients are defined, 

Continuous Wavelet Transformation (CWT) and Maximum Overlap Discrete Wavelet 

Transformation (MODWT), before the multiscaling exponents ζ(q) and multifractal spectrum 

D(h) are computed from the obtained wavelet coefficients. Finally, the D-statistics identify 

the presence of inhomogeneous wavelet variance that arises from a multiplicative cascading 

process ∆BH(A(t)). The reader is advised to consider the concluding remarks before applying 

the presently introduced framework to response series.   

 

Continuous Wavelet Transform (CWT): Let X(t) be a response series with t = 1, 2, … , N 

trials. Let ψ(t/∆t) be the Morlet waveform scaled according to scale ∆t illustrated in the upper 

panel of Figure 2A. Then the wavelet coefficients W∆t(t) of CWT are defined according to the 

following equation: 
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1( ) ( ) ( / )tW t X t t t dt
t

ψΔ = Δ
Δ ∫         (A9) 

 

High W∆t(t) denotes high correlation between the Morlet waveform ψ(t/∆t) and the response 

series X(t) within the cone C∆t(t) of the upper panel of Figure 2A. Thus, normalizing the 

signal energy to 1, the wavelet coefficient W∆t(t) defines the time-dependent correlation 

coefficients between the Morlet waveform and the response series X(t) for each temporal scale 

∆t. 

 

Maximum Overlap Discrete Wavelet Transformation (MODWT): For MODWT the wavelet 

coefficients W∆t(t) are defined by the following algorithm (Percival & Walden, 2000): 

 

1

,
0

( ) ( mod )
tL

t t l
l

W t h X t l N
Δ −

Δ Δ
=

= −∑       for        ∆t = 2, 4.., 1024    and  t = 0,…,1023  (A10) 

 

where the waveform illustrated in the lower panel of Figure 2A is defined by the filter 

coefficients Gl for l = [0, 1,…, 7] for an 8th order Least Asymmetric filter (see Table 109 in 

Percival and Walden, 2000): 

 

( )
2, log ( ) / 2

1
2

l
L l

t l t

G
h −
Δ Δ

−
=           (A11) 

 

The upper limit L∆t = 6∆t +5  in the sum of equation (A10) defines the length of the waveform 

in the lower panel of Figure 2A and the argument modt l N−  the centering of the waveform 

in the middle of the cone C∆t(t) with width ∆t. The 8th order Least Asymmetric waveform was 

chosen since it prevents energy leakage into adjacent scales Δt without inducing a high filter 
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order. High filter orders extend the region between the ends of the cone C∆t(t) and the ends of 

the waveform, which induces artifacts into a large number of samples at the endpoints of the 

response series. The wavelet transformation in the present paper was confined to scales Δt = 

2, 4, 8, 16 and 32 trials in order to prevent the influence of these boundary coefficients. In 

contrast to the CWT, the MODWT is able to define scale-dependent processes illustrated in 

the lower panel of Figure 2B as orthogonal components represented by the inverse MODWT: 

 

1

,
0

( ) ( mod )    for    2, 4,...,1024      and   0,...,1023
tL

t t l t
l

D t h W t l N t t
Δ −

Δ Δ Δ
=

= − Δ = =∑   (A12) 

 

Computation of the multifractal spectrum: The multifractal spectrum of the response time 

series is obtained by the Legendre transform (2) after the multiscaling exponents ζ(q) has been 

computed as the linear slope of the least square fit of 2log ( )tm qΔ versus 2log tΔ . However, a 

weighted least square fit is employed for the MODWT based estimation since its limited 

number of discrete scales ∆t limits the precision of the ordinary least square fit. The weighted 

least square fit is computed by the following two steps. First, the q-order statistical moment 

m∆t(q) in equation (A5) is computed by the wavelet coefficients W∆t(t) obtained from equation 

(A10): 
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2

q
t t
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t t
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N n
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Δ Δ
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=
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         (A13) 

 

where n∆t = (5∆t+5)/2 initial and end points were inflicted by boundary artifacts and excluded. 

Secondly, the multiscale exponents ζ(q) for 0 < q < 3 is estimated by a weighted least squares 

estimation (Veitch & Abry, 1999; Abry et al., 2000, 2002):  
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with weights: 
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X∆t(q) and Y∆t(q) were estimated under the general assumption that the response series has a 

non-Gaussian distribution with finite variance: 
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where m∆t(q) and k∆t(q,t) is defined by equation (A13).  
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D-statistics of wavelet variance: The following equations (A18) - (A22) provide a general test 

statistics for the stationarity of the wavelet variance [ ]2( )tW tΔ  of each temporal scale ∆t 

(Whitcher, 1998):   

 

( )max ,D D D− +=           (A18) 

 

where: 

 

( )maxk kD ±
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where: 
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where n∆t = (5∆t+5)/2 initial points were inflicted by boundary artifacts and excluded. In order 

to decide whether D is significantly different from a homogenous wavelet variance, Dsurr is 

computed for N series of Gaussian-distributed random numbers. N’ then defines the number 
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of series for which Dsurr>D, and the response series has a significant inhomogeneous wavelet 

variance if: 

 

 ' 0.05N
N

<            (A22) 

 

By substituting the Gaussian random numbers with N realizations of a superposition of 1/f α 

fluctuation and white noise, an aggregated autoregressive model, or a multiplicative cascading 

process, one creates a statistical test for the significant resemblance between the probability 

density function of W∆t(t) on each scale Δt in a response series and each of these models.  

 

Concluding remarks: The following remarks are important to consider when wavelet-based 

multifractal analysis is applied to response series. 

First, there are other transformations besides wavelets that decompose a response 

series into the time-scale plane of Figure 2. There are, for example, the short-time Fourier 

transformation (Gabor, 1946), the Hilbert transform combined with either Fourier band-pass 

decomposition (Bloomfield, 1976), empirical mode decomposition (Huang, Shen, Long, Wu, 

Shih, Zheng, Yen, Tung, & Liu, 1998), or wavelet packet decomposition (Ihlen, 2009; Olhede 

& Walden, 2005), and the Wigner-Ville transform (Wigner, 1932), to name but a few. The 

wavelet approach was chosen in the present paper because it is the most utilized 

transformation in the multifractal analysis of multiplicative cascading processes.  

Secondly, although the deduction of the multifractal spectrum width hmax – hmin was 

validated by two different wavelet algorithms, the estimated spectrum was restricted to a 

limited range 0 < q < 3 of q-order statistical moments (A13). The upper bound was set 

through tests on sets of 100 realizations of log-normal cascades (A6) of 1024 samples, where 

each set was within a large range of spectrum widths (see the gray arcs in Figure 3C). The 
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estimation error increases for higher order q in the statistical moments by the finite size of the 

synthesized series. However, the slope q of the multifractal spectrum D(h) yields less increase 

in h and therefore less influence on the spectrum width hmax – hmin for higher order q. 

Furthermore, Lashermes, Abry, and Chainais (2004) have shown that there is a linearization 

effect for the wavelet-based estimation of the multiscaling exponent ζ(q) for large q that 

further advocates the restrictive range used in the present study. The lower bound q > 0 was 

chosen since both the CWT and MODWT utilized in the present study yield unstable 

estimations of negative moments of equation (A13) (e.g., Manimaran, Panigrahi, & Parikh, 

2005). This implies that only the lower half of the spectrum is estimated (see Figures 5C, 6D 

and 7B), which assumes a symmetric distribution G(H lnM) of the interaction multipliers. 

Modulus maxima extensions of the CWT (Muzy et al., 1993) and multifractal extensions of 

detrended fluctuation analysis (Kantelhardt, Zschiegner, Koscielny-Bunde, Havlin, Bunde, & 

Stanley, 2002) have been shown to yield stable estimations of the multifractal spectrum for 

negative q. Unfortunately, even a series of 1024 trials as in the current data sets is not enough 

to yield stable results for these analyses, which would need in the order of 3000 - 8000 trials. 

However, the negative q defines the scaling of the laminar periods with low performance 

variability, the precision of which is limited by the millisecond accuracy of the response time 

measurements. Possible alternatives to extend the estimation of the multifractal spectrum 

width such that it can include the negative q-range are a MODWT using wavelet leaders 

rather than coefficients (cf. Jaffard, Lashermes, & Abry, 2006) or an indirect estimation by 

applying conventional monofractal methods to the magnitude of change in response time (cf. 

Ashkenazy, Havlin, Ivanov, Peng, Frohlinde, & Stanley, 2003; Kalisky, Ashkenazy, & 

Havlin, 2005).  

Thirdly, both the MODWT and CWT algorithms assume that the multiplicative 

interactions are scale invariant such that the weighted linear least square fit (A13)-(A17) can 
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estimate the multiscaling exponent ζ(q). Only when this assumption holds can multifractality 

be unequivocally equated with intermittency generated by multiplicative interactions between 

temporal scales. However, this assumption does not necessarily hold for all response series 

across cognitive tasks. There were several signs of deviations from strict multifractal 

fluctuations in the present reanalyses. First, several of the response series had a multifractal 

spectrum width hmin – hmax significantly smaller then the surrogate series while the presence of 

multifractality predicts that the width should be significantly larger. Secondly, the lower panel 

in Figure 5C displays a response series of an interval estimation task that possesses an 

approximately monofractal spectrum. Yet, the wavelet coefficients WΔt(t) of the MODWT 

(A10) of the same response series are more inhomogeneously distributed (see lower panel of 

Figure 5A) compared to the fractional Gaussian noise ΔBH(t) in lower panels in Figure 3. 

Thirdly, all 66 response series had wavelet variances significantly (p < 0.05) different from a 

Gaussian noise by the D-statistics (A18)-(A22), although some of the series especially in the 

interval estimation and word naming task had a monofractal spectrum in addition. These three 

signs contradict the omnipresence of multifractal fluctuations in cognitive performance. 

However, it does not necessarily contradict the omnipresence of multiplicative interactions 

between temporal scales. The significantly larger ensemble of multifractal spectrum widths 

for the surrogates still indicates that interrelation between the Fourier phases of certain 

response series influences the multifractal spectrum width. However, these interrelations 

might be more local in scale as seen in the lower panel of Figure 5A compared with the 

interrelations seen in a multiplicative cascading process ΔBH(A(t)) (see upper panel of Figure 

3A). Actually, the response series in the lower panels of Figure 5A was one of the few 

response series where the inhomogeneous variance was not well replicated by a multiplicative 

cascading process ΔBH(A(t)) with equal multifractal spectrum width hmin – hmax. Thus, it is 

important to note that multifractal analyses compress the information of the multiplicative 
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interactions (i.e., interrelation between the Fourier phases) in the time-scale plane into the 

multifractal spectrum width under the assumption that the response time fluctuations are scale 

invariant. Further development of time-scale decomposition, multifractal analysis and 

multiplicative cascading models is important for application to response series where the 

multiplicative interactions between temporal scales are not scale invariant.      


